题目链接:http://hihocoder.com/problemset/problem/1636

题目大意:有n堆石头,每次只能合并l~r堆,每次合并的花费是要合并的石子的重量,问你合并n堆石子的最小花费,若不能合并则输出0。

解题思路:

这算是石子合并的加强版了吧,原来石子合并是只能两堆两堆地合并,而现在对合并堆数加了一个范围[l,r]。这题我看到的时候也没什么想法,看了题解才会的,而且也看的不是特别懂。

首先定义数组dp[i][j][k]表示将[i,j]的石子合并成k堆需要的最小花费。

那么我们可以得到状态转移方程:

①p>1时,dp[i][j][p]=min(dp[i][j][p],dp[i][k][p-1]+dp[k+1][j][1]),(i=<k<j,2=<p<=r)

②p==1时,dp[i][j][1]=min(dp[i][j][1],dp[i][j][k]+sum[j]-sum[i-1]),(l=<k<=r)

之前还有几个疑问:

1、为什么①中,p范围是[2,r]而不是[l,r]?

答:[l,r]是的限制是给p==1时即合并的时候用的,单纯地划分区间并没有这个限制。

2、为什么①的状态转移方程是可行的,难道不应该写成dp[i][j][p]=min(dp[i][j][p],dp[i][k][p-x]+dp[k+1][j][x])吗?

答:如果手动模拟一下会发现,上面连个状态转移方程是等效的,所以①可以求出最优解,而且考虑到时间复杂度的问题,①省去了枚举x的花费,显然更优。

代码:

 #include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<string>
#define lc(a) (a<<1)
#define rc(a) (a<<1|1)
#define MID(a,b) ((a+b)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define clr(arr,val) memset(arr,val,sizeof(arr))
#define _for(i,start,end) for(int i=start;i<=end;i++)
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef long long LL;
const int N=2e2+;
const int INF=0x3f3f3f3f;
const double eps=1e-; int sum[N];
int dp[N][N][N]; int main(){
int n,l,r;
while(cin>>n>>l>>r){
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++){
cin>>sum[i];
sum[i]+=sum[i-];
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
dp[i][j][j-i+]=;
}
}
for(int len=;len<n;len++){
for(int i=;i+len<=n;i++){
int j=i+len;
//注意p要从2开始,而不是从l开始
for(int p=;p<=r;p++){
for(int k=i;k<j;k++){
if(k-i+<p-) continue;
dp[i][j][p]=min(dp[i][j][p],dp[i][k][p-]+dp[k+][j][]);
}
}
for(int p=l;p<=r;p++){
dp[i][j][]=min(dp[i][j][],dp[i][j][p]+sum[j]-sum[i-]);
}
}
}
if(dp[][n][]==INF)
cout<<<<endl;
else
cout<<dp[][n][]<<endl;
}
return ;
}

hihocoder1636 Pangu and Stones(区间DP(石子合并变形))的更多相关文章

  1. 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  2. icpc 2017北京 J题 Pangu and Stones 区间DP

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  3. hihocoder 1636 : Pangu and Stones(区间dp)

    Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the first livi ...

  4. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  5. DP石子合并问题

    转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735 [石子合并]    在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序 ...

  6. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  7. hihocoder1636 Pangu and Stones

    思路: 区间dp.dp[l][r][k]表示把区间[l, r]的石子合并成k堆所需要的最小代价. 实现: #include <iostream> #include <cstring& ...

  8. 区间DP小结

    也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...

  9. 「区间DP」「洛谷PP3146 」[USACO16OPEN]248 G

    [USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...

随机推荐

  1. bzoj 3928: [Cerc2014] Outer space invaders

    $f[i][j]$表示消灭起始时间在$(i,j)$内的外星人所花费的最小代价. 考虑在这个区间内距离最远的外星人h,在他的区间中一定要选一个点要开一炮,而且这一炮可以顺便把其他跨过这个点的敌人消灭,剩 ...

  2. uoj50【UR#3】链式反应

    题解: 令$a(x)$为破坏死光的$EFG$,$f(x)$为方案的$EGF$:$f(x) = x + \int \  \frac{1}{2} f^2(x) a(x) \  dt$; 注意到$f(0)= ...

  3. 团体程序设计天梯赛 L1-006. 连续因子

    Two ways: 1.接近O(n) #include <stdio.h> #include <stdlib.h> #include <math.h> int ma ...

  4. Java入门:char与byte的区别

    byte 是字节数据类型 ,是有符号型的,占1 个字节:大小范围为-128—127 .char 是字符数据类型 ,是无符号型的,占2字节(Unicode码 ):大小范围 是0—65535 :char是 ...

  5. shell比较浮点数和整数

    今天有一个朋友忽然问我在shell中,如何比较浮点数和整数,倒是把我问的一愣,在工作中确实没有遇到这个场景.我们也知道,在shell中数字的计算通常都会转换成整数,比如说1.1和1会被认为是一样的.这 ...

  6. Mac 上配置 PhpMyAdmin

    一.配置自带的 apache 服务器环境 由于 PHP apache 环境在 Mac OS上是自带的,所以不需要另处下安装包,只需要简单配置一下即可.首先打开终端输入命令: sudo vim /etc ...

  7. markdown里的多层次列表项

    markdown里的多层次列表项 编写python的docstrng太多, 有时候就搞混淆了层次化列表项在博客或者随笔里的规则. docstirng里, 仅用两个空格的缩进就可以实现. 博客里通常是一 ...

  8. 可供选择CSS框架

    在这里你有一个很酷的框架,收集创建的CSS布局. 如果你不喜欢框架,宁愿使用自己的手写代码以促进自己的发展,请跳过本篇文章. 我想有一个建设性的意见,那就是有选择的使用其优点避开其缺点. 就个人而言, ...

  9. 轻松使用div模拟select下拉菜单

    没有办法,平时不是万不得已我是不喜欢去模拟各类控件的,一个是麻烦,二个是对性能也有些影响,还是原生的来的实在.老板昨天发话,必须模拟赶紧的,老外最喜欢简洁干净的风格,说的貌似都很在理的样子,业务部也是 ...

  10. 浅谈iOS与社交化网络

    CHENYILONG Blog 社交化网络 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/luohanchenyilong  ...