FunDA的并行数据库读取功能是指在多个线程中同时对多个独立的数据源进行读取。这些独立的数据源可以是在不同服务器上的数据库表,又或者把一个数据库表分成几个独立部分形成的独立数据源。当然,并行读取的最终目的是提高程序的运算效率。在FunDA中具体的实现方式是对多个独立的数据流进行并行读取形成一个统一综合的数据流。我们还是用上次示范所产生的表AQMRPT作为样板数据。在这次示范里我们需要把AQMRPT表中的STATENAME,COUNTYNAME字段抽取出来形成两个独立的表STATE和COUNTY。这两个表结构如下:

  case class StateModel(id: Int, name: String) extends FDAROW
class StateTable(tag: Tag) extends Table[StateModel](tag,"STATE") {
def id = column[Int]("ID",O.AutoInc,O.PrimaryKey)
def name = column[String]("NAME",O.Length())
def * = (id,name)<>(StateModel.tupled,StateModel.unapply)
}
val StateQuery = TableQuery[StateTable] case class CountyModel(id: Int, name: String) extends FDAROW
case class CountyTable(tag: Tag) extends Table[CountyModel](tag,"COUNTY") {
def id = column[Int]("ID",O.AutoInc,O.PrimaryKey)
def name = column[String]("NAME",O.Length())
def * = (id,name)<>(CountyModel.tupled,CountyModel.unapply)
}
val CountyQuery = TableQuery[CountyTable]

首先我们用一些铺垫代码把这两个表结构创建出来:

  //assume two distinct db objects
val db_a = Database.forConfig("h2db")
//another db object
val db_b = Database.forConfig("h2db") //create STATE table
val actionCreateState = Models.StateQuery.schema.create
val futCreateState = db_a.run(actionCreateState).andThen {
case Success(_) => println("State Table created successfully!")
case Failure(e) => println(s"State Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateState,Duration.Inf) //create COUNTY table
val actionCreateCounty = Models.CountyQuery.schema.create
val futCreateCounty = db_a.run(actionCreateCounty).andThen {
case Success(_) => println("County Table created successfully!")
case Failure(e) => println(s"County Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateCounty,Duration.Inf)

下一步我们把STATENAME从AQMRPT表里抽取出来形成一个数据源(data-source):

  //define query for extracting State names from AQMRPT
val qryStates = AQMRPTQuery.map(_.state).distinct.sorted // .distinctOn(r => r)
case class States(name: String) extends FDAROW
implicit def toStates(row: String) = States(row)
val stateLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toStates _)
val statesStream = stateLoader.fda_typedStream(qryStates.result)(db_a)(,)()

由于COUNTYNAME比较多,我们可以把AQMRPT表按STATENAME拆成三部分A-K、K-P、P-Z。然后把这三部分构建成三个独立的数据源:

  //define query for extracting County names from AQMRPT in separate chunks
//query with state name >A and <K
val qryCountiesA_K = AQMRPTQuery.filter(r => (r.state.toUpperCase > "A" &&
r.state.toUpperCase < "K")).map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) //query with state name >K and <P
val qryCountiesK_P = AQMRPTQuery.filter(r => (r.state.toUpperCase > "K" &&
r.state.toUpperCase < "P")).map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) //query with state name >P
val qryCountiesP_Z = AQMRPTQuery.filter(r => r.state.toUpperCase > "P")
.map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) case class Counties(state: String, name: String) extends FDAROW
implicit def toCounties(row: (String,String)) = Counties(row._1,row._2)
val countyLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toCounties _)
//3 separate streams to extract county names from the same database table AQMRPT
val countiesA_KStream = countyLoader.fda_typedStream(qryCountiesA_K.result)(db_b)(,)()
val countiesK_PStream = countyLoader.fda_typedStream(qryCountiesK_P.result)(db_b)(,)()
val countiesP_ZStream = countyLoader.fda_typedStream(qryCountiesP_Z.result)(db_b)(,)()

然后对这四个数据源进行并行读取:

  //obtain a combined stream with parallel loading with max of 4 open computation
val combinedStream = fda_par_load(statesStream,countiesA_KStream,countiesK_PStream,countiesP_ZStream)()

现在这个组合的数据流里最少有两种不同的数据元素,分别是:case class States和case class Counties。我们可以在combinedStream上连接两个用户自定义函数(user-defined-task)分别截取States和Counties数据行并且把它们转化成各自的插入数据指令行(ActionRow):

  //define separate rows for different actions
case class StateActionRow(action: FDAAction) extends FDAROW
case class CountyActionRow(action: FDAAction) extends FDAROW
val actionRunner = FDAActionRunner(slick.jdbc.H2Profile) //user-task to catch rows of States type and transform them into db insert actions
def processStates: FDAUserTask[FDAROW] = row => {
row match {
//catch states row and transform it into insert action
case States(stateName) => //target row type
println(s"State name: ${stateName}")
val action = StateQuery += StateModel(,stateName)
fda_next(StateActionRow(action))
case others@ _ => //pass other types to next user-defined-tasks
fda_next(others)
}
}
//user-task to catch rows of Counties type and transform them into db insert actions
def processCounties: FDAUserTask[FDAROW] = row => {
row match {
//catch counties row and transform it into insert action
case Counties(stateName,countyName) => //target row type
println(s"County ${countyName} of ${stateName}")
val action = CountyQuery += CountyModel(,countyName+ " of "+stateName)
fda_next(CountyActionRow(action))
case others@ _ => //pass other types to next user-defined-tasks
fda_next(others)
}
}

经过processStates和processCounties两个自定义函数处理后combinedStream里又多了两种不同的元素:StateActionRow和CountyActionRow。同样,我们可以用两个自定义函数来运算这两种动作行:

  //user-task to catch States insert action rows and run them
def runStateAction: FDAUserTask[FDAROW] = row => {
row match {
case StateActionRow(action) => //this is a state action row type
println(s"runstate: ${action}")
actionRunner.fda_execAction(action)(db_a) //run this query with db_a context
fda_skip
case others@ _ => //otherwise pass alone to next user-defined-tasks
fda_next(others)
}
} //user-task to catch Counties insert action rows and run them
def runCountyAction: FDAUserTask[FDAROW] = row => {
row match {
case CountyActionRow(action) => //this is a county action row type
actionRunner.fda_execAction(action)(db_b) //run this query with db_b context
fda_skip
case others@ _ => //otherwise pass alone to next user-defined-tasks
fda_next(others)
}
}

好了,现在我们可以把这四个自定义函数在combinedStream上组合起来成为一个完整功能的程序:

  combinedStream.appendTask(processStates)
.appendTask(processCounties)
.appendTask(runStateAction)
.appendTask(runCountyAction)
.startRun

然后用startRun来正式运算这个程序。

下面就是本次示范的源代码:

import com.bayakala.funda._
import api._
import scala.language.implicitConversions
import slick.jdbc.H2Profile.api._
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}
import scala.util.{Failure, Success}
import Models._
import scala.concurrent.ExecutionContext.Implicits.global object ParallelLoading extends App { //assume two distinct db objects
val db_a = Database.forConfig("h2db")
//another db object
val db_b = Database.forConfig("h2db") //create STATE table
val actionCreateState = Models.StateQuery.schema.create
val futCreateState = db_a.run(actionCreateState).andThen {
case Success(_) => println("State Table created successfully!")
case Failure(e) => println(s"State Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateState,Duration.Inf) //create COUNTY table
val actionCreateCounty = Models.CountyQuery.schema.create
val futCreateCounty = db_a.run(actionCreateCounty).andThen {
case Success(_) => println("County Table created successfully!")
case Failure(e) => println(s"County Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateCounty,Duration.Inf) //define query for extracting State names from AQMRPT
val qryStates = AQMRPTQuery.map(_.state).distinct.sorted // .distinctOn(r => r)
case class States(name: String) extends FDAROW
implicit def toStates(row: String) = States(row)
val stateLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toStates _)
val statesStream = stateLoader.fda_typedStream(qryStates.result)(db_a)(,)() //define query for extracting County names from AQMRPT in separate chunks
//query with state name >A and <K
val qryCountiesA_K = AQMRPTQuery.filter(r => (r.state.toUpperCase > "A" &&
r.state.toUpperCase < "K")).map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) //query with state name >K and <P
val qryCountiesK_P = AQMRPTQuery.filter(r => (r.state.toUpperCase > "K" &&
r.state.toUpperCase < "P")).map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) //query with state name >P
val qryCountiesP_Z = AQMRPTQuery.filter(r => r.state.toUpperCase > "P")
.map(r => (r.state,r.county))
.distinctOn(r => (r._1,r._2))
.sortBy(r => (r._1,r._2)) case class Counties(state: String, name: String) extends FDAROW
implicit def toCounties(row: (String,String)) = Counties(row._1,row._2)
val countyLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toCounties _)
//3 separate streams to extract county names from the same database table AQMRPT
val countiesA_KStream = countyLoader.fda_typedStream(qryCountiesA_K.result)(db_b)(,)()
val countiesK_PStream = countyLoader.fda_typedStream(qryCountiesK_P.result)(db_b)(,)()
val countiesP_ZStream = countyLoader.fda_typedStream(qryCountiesP_Z.result)(db_b)(,)() //obtain a combined stream with parallel loading with max of 4 open computation
val combinedStream = fda_par_load(statesStream,countiesA_KStream,countiesK_PStream,countiesP_ZStream)() //define separate rows for different actions
case class StateActionRow(action: FDAAction) extends FDAROW
case class CountyActionRow(action: FDAAction) extends FDAROW
val actionRunner = FDAActionRunner(slick.jdbc.H2Profile) //user-task to catch rows of States type and transform them into db insert actions
def processStates: FDAUserTask[FDAROW] = row => {
row match {
//catch states row and transform it into insert action
case States(stateName) => //target row type
println(s"State name: ${stateName}")
val action = StateQuery += StateModel(,stateName)
fda_next(StateActionRow(action))
case others@ _ => //pass other types to next user-defined-tasks
fda_next(others)
}
}
//user-task to catch rows of Counties type and transform them into db insert actions
def processCounties: FDAUserTask[FDAROW] = row => {
row match {
//catch counties row and transform it into insert action
case Counties(stateName,countyName) => //target row type
println(s"County ${countyName} of ${stateName}")
val action = CountyQuery += CountyModel(,countyName+ " of "+stateName)
fda_next(CountyActionRow(action))
case others@ _ => //pass other types to next user-defined-tasks
fda_next(others)
}
} //user-task to catch States insert action rows and run them
def runStateAction: FDAUserTask[FDAROW] = row => {
row match {
case StateActionRow(action) => //this is a state action row type
println(s"runstate: ${action}")
actionRunner.fda_execAction(action)(db_a) //run this query with db_a context
fda_skip
case others@ _ => //otherwise pass alone to next user-defined-tasks
fda_next(others)
}
} //user-task to catch Counties insert action rows and run them
def runCountyAction: FDAUserTask[FDAROW] = row => {
row match {
case CountyActionRow(action) => //this is a county action row type
actionRunner.fda_execAction(action)(db_b) //run this query with db_b context
fda_skip
case others@ _ => //otherwise pass alone to next user-defined-tasks
fda_next(others)
}
} def showRows: FDAUserTask[FDAROW] = row => {
row match {
case States(nm) =>
println("")
println(s"State: $nm")
println("************")
fda_skip
case Counties(s,c) =>
println("")
println(s"County: $c")
println(s"state of $s")
println("------------")
fda_skip
case _ => fda_skip
}
} combinedStream.appendTask(processStates)
.appendTask(processCounties)
.appendTask(runStateAction)
.appendTask(runCountyAction)
.startRun }

FunDA(14)- 示范:并行运算,并行数据库读取 - parallel data loading的更多相关文章

  1. 浅析基于微软SQL Server 2012 Parallel Data Warehouse的大数据解决方案

    作者 王枫发布于2014年2月19日 综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个 ...

  2. 转:浅析基于微软SQL Server 2012 Parallel Data Warehouse的大数据解决方案

    综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个时代决胜未来的关键因素,而基于大数据的 ...

  3. pytorch例子学习-DATA LOADING AND PROCESSING TUTORIAL

    参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUT ...

  4. FunDA(15)- 示范:任务并行运算 - user task parallel execution

    FunDA的并行运算施用就是对用户自定义函数的并行运算.原理上就是把一个输入流截分成多个输入流并行地输入到一个自定义函数的多个运行实例.这些函数运行实例同时在各自不同的线程里同步运算直至耗尽所有输入. ...

  5. FunDA(11)- 数据库操作的并行运算:Parallel data processing

    FunDA最重要的设计目标之一就是能够实现数据库操作的并行运算.我们先重温一下fs2是如何实现并行运算的.我们用interleave.merge.either这几种方式来同时处理两个Stream里的元 ...

  6. netty源码解解析(4.0)-14 Channel NIO实现:读取数据

     本章分析Nio Channel的数据读取功能的实现. Channel读取数据需要Channel和ChannelHandler配合使用,netty设计数据读取功能包括三个要素:Channel, Eve ...

  7. Lombok(1.14.8) - @Getter, @Setter, @ToString, @EqualsAndHashCode & @Data

    @Getter / @Setter @Getter 和 @Setter,分别实现了 Gette r和 Setter 方法. package com.huey.hello.bean; import ja ...

  8. Fast data loading from files to R

    Recently we were building a Shiny App in which we had to load data from a very large dataframe. It w ...

  9. 试驾 Citus 11.0 beta

    https://www.citusdata.com/blog/2022/03/26/test-drive-citus-11-beta-for-postgres/ Citus 11.0 beta 的最大 ...

随机推荐

  1. laravel中if

    1.控制器 2.模板

  2. /etc/inittab加入自动启动格式

    R01:35:respawn:/usr/bin/exe_program 说明 R01:标识,每一行必须唯一(R01并无特殊含义,可自定义). 35:有效模式,3字符界面启动,5图形界面启动 respa ...

  3. 二进制搭建kubernetes多master集群【开篇、集群环境和功能介绍】

    本文主要说明kubernetes集群使用组建的版本和功能介绍.. 一.组件版本 Kubernetes 1.12.3 Docker 18.06.1-ce Etcd 3.3.10 Flanneld 0.1 ...

  4. 2018.07.22 codeforces750E(线段树维护状态转移)

    传送门 给出一个数字字串,给出若干个询问,询问在字串的一段区间保证出现2017" role="presentation" style="position: re ...

  5. docker 部署nginx 使用keepalived 部署高可用

    一.体系架构 在Keepalived + Nginx高可用负载均衡架构中,keepalived负责实现High-availability (HA) 功能控制前端机VIP(虚拟网络地址),当有设备发生故 ...

  6. Navicat如何导出数据库的svg、pdf,png图片

    有时候各位可能有这么一种感觉,如果一个数据库中的表太多的话,查看起来不大方便,如果你习惯用navicat软件来查看er图的话,那也是更困难了,这里介绍一种方法,就是把这些关系结构导出一个可以用浏览器打 ...

  7. Oracle之SQL语句性能优化(34条优化方法)

    (1)选择最有效率的表名顺序(只在基于规则的优化器中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处 ...

  8. 全面理解iOS开发中的Scroll View[转]

    from:http://mobile.51cto.com/hot-430409.htm 可能你很难相信,UIScrollView和一个标准的UIView差异并不大,scroll view确实会多一些方 ...

  9. (KMP)Seek the Name, Seek the Fame -- poj --2752

    http://poj.org/problem?id=2752 Seek the Name, Seek the Fame Time Limit: 2000MS   Memory Limit: 65536 ...

  10. (转)mmap和shm共享内存的区别和联系

    共享内存的创建 根据理论: 1. 共享内存允许两个或多个进程共享一给定的存储区,因为数据不需要来回复制,所以是最快的一种进程间通信机制.共享内存可以通过mmap()映射普通文件 (特殊情况下还可以采用 ...