题目链接

Climbing Stairs - LeetCode

注意点

  • 注意边界条件

解法

解法一:这道题是一题非常经典的DP题(拥有非常明显的重叠子结构)。爬到n阶台阶有两种方法:1. 从n-1阶爬上 2. 从n-2阶爬上。很容易得出递推式:f(n) = f(n-1)+f(n-2)于是可以得到下面这种最简单效率也最低的解法 —— 递归。

class Solution {
public:
int climbStairs(int n) {
if(n == 0 || n == 1 || n == 2)
{
return n;
}
return climbStairs(n-1)+climbStairs(n-2);
}
};

解法二:思路不变,改为更高效的写法 —— 迭代。时间复杂度O(n)。

class Solution {
public:
int climbStairs(int n) {
vector<int> ans;
int i;
for(i = 0;i <= 2;i++)
{
ans.push_back(i);
}
for(i = 3;i <= n;i++)
{
ans.push_back(ans[i-1]+ans[i-2]);
}
return ans[n];
}
};

解法三:继续优化,可以看出解法二中需要开一个额外的数组来保存过程中计算的值,这些值计算完之后就没用了,所以改用两个变量来替代。时间复杂度O(n),空间复杂度O(1)

class Solution {
public:
int climbStairs(int n) {
if(n == 0||n == 1||n == 2)
{
return n;
}
int a = 2,b = 1,i;
for(i = 0;i < n-2;i++)
{
a = a+b;
b = a-b;
}
return a;
}
};

或者一个更好理解的

class Solution {
public:
int climbStairs(int n) {
if(n == 0||n == 1||n == 2)
{
return n;
}
int a = 2,b = 1,ret,i;
for(i = 0;i < n-2;i++)
{
ret = a+b;
b = a;
a = ret;
}
return ret; }
};

小结

  • 这道题可以扩展到每次可以走k步,那递推式就变为f(n) = f(n-1) + f(n-2) + ... + f(n-k)

Climbing Stairs - LeetCode的更多相关文章

  1. Min Cost Climbing Stairs - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Min Cost Climbing Stairs - LeetCode 注意点 注意边界条件 解法 解法一:这道题也是一道dp题.dp[i]表示爬到第i层 ...

  2. climbing stairs leetcode java

    问题描述: You are climbing a stair case. It takes n steps to reach to the top. Each time you can either ...

  3. [LeetCode] Climbing Stairs 爬梯子问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  4. Leetcode: climbing stairs

    July 28, 2015 Problem statement: You are climbing a stair case. It takes n steps to reach to the top ...

  5. [LeetCode] Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  6. [LeetCode] Climbing Stairs (Sequence DP)

    Climbing Stairs https://oj.leetcode.com/problems/climbing-stairs/ You are climbing a stair case. It ...

  7. [LeetCode] 746. Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  8. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  9. [LeetCode] 70. Climbing Stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

随机推荐

  1. NAT概念解释(不完全版,但不会搞错...)

    NAT在计算器网络中,网络地址转换(Network Address Translation,缩写为NAT),也叫做网络掩蔽或者IP掩蔽(IP masquerading)是一种IP数据包在通过路由器或防 ...

  2. java抽象类与接口区别

    java抽象类与接口区别: abstract class和interface是Java语言中对于抽象类定义进行支持的两种机制,正是由于这两种机制的存在,才赋予了Java强大的面向对象能力. abstr ...

  3. smash:一个类unix内核

    前言 每一个蹩脚的C++程序员都有一颗做操作系统内核的心.我从大学毕业开始就对操作系统内核感兴趣,将其看作是术之尽头,可惜那时候一直在无忧无虑的忙着玩网游,也就搁置了.随着时间的推移,逐渐就将其淡忘了 ...

  4. 【python 2.7】获取外部参数

    import sys res_0 = sys.argv[0] res_1 = sys.argv[1] res_2 = sys.argv[2] print res_0 print res_1 print ...

  5. Streamr助你掌控自己的数据(2)——三种整合数据至Streamr的典型场景

    博客说明 所有刊发内容均可转载但是需要注明出处. 三种整合数据至Streamr的典型场景 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数 ...

  6. Android NDK 工具链的使用方法(Standalone Toolchain)

    转载:http://blog.csdn.net/smfwuxiao/article/details/6587709 首先需要确定目标机器的指令集. 如果是 x86 的机器,用 x86-4.4.3 版本 ...

  7. php 数组去重

    php 数组去重 数组中重复项的去除 2010-07-28 15:29 一维数组的重复项: 使用array_unique函数即可,使用实例如下: <?php                    ...

  8. 第十三次作业psp

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图

  9. Scrum Meeting 10.31

    成员 今日任务 明日任务 今日工作时长 徐越 整理开发文档,学习ip相关知识,学习servlet相关知识 代码迁移,学习数据库相关知识 5h 赵庶宏 学习学长的servlet代码 进行数据库的连接 4 ...

  10. “北航Clubs” Alpha版发布!

    一.功能 1.获取活动信息: 用户进入网站后,第一眼就可以查看到近期活动 2.查看活动详情 点击活动标题,可以进入活动详情页面 3.注册功能 首页点击注册,输入学号.密码.姓名.手机号即可完成注册 4 ...