Description

You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.

Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.

Finally you ended up with the following conditions to building the castle:

  • \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
  • For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
  • \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.

As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.

Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.

Input

The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.

Output

Print the minimum number of spots you can occupy so the all the castle building conditions hold.

Examples

input

5 2

output

3

input

6 8

output

3

Note

Here are the heights of some valid castles:

  • n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
  • n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)

The first list for both cases is the optimal answer, 3 spots are occupied in them.

And here are some invalid ones:

  • n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
  • n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]

Solution

根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:

  • \(h_{1} \le H\)
  • \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
  • 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)

我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。

最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H​递增,再递减到1的序列,分情况处理。

对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。

对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。

大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}

CodeForces 985D Sand Fortress的更多相关文章

  1. Codeforces 985 D - Sand Fortress

    D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...

  2. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. CF985D Sand Fortress

    思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...

  4. Codeforces 985D

    题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...

  5. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  6. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  7. Educational Codeforces Round 44#985DSand Fortress+二分

    传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...

  8. Codeforces Round #355 (Div. 2)-C

    C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...

  9. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

随机推荐

  1. 转: c# 字符串公式计算

    C# 自动计算字符串公式的值(三种方式) 从网络上找到这段源码,重新整理后测试通过. 有三种方式可自动计算字符串公式的值:1. 最简单的方式,由SQL语句计算2. 使用Microsoft.Javasc ...

  2. PHP利用二叉堆实现TopK-算法的方法详解

    前言 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证 内存和速度的效率,我们可能第一个想法就是利用排序,然后 ...

  3. September 15th 2017 Week 37th Friday

    First I need your hand, then forever can begin. 我需要牵着你的手,才能告诉你什么是永远. If you want to shake hands with ...

  4. 第一篇,编译生成libcef_dll_wrapper

    因为工作原因需要在程序里面嵌入地图,在网上看了百度地图和高德地图都没有提供c++的接口,提供有web接口,那只好在程序里面嵌入web控件了,第一想到的是web browser控件,接着脑海里又想到IE ...

  5. 手写HASHMAP

    手写HASHMAP const int MAXN=10010; const int HASH=10100;            //需要hash的数的总个数最大值 struct HASHMAP { ...

  6. 在WebStorm中使用CSScomb

    在前端开发写CSS时,往往不能很好的把握格式和属性顺序,阅读起来不友好.CSScomb帮助我们解决了这个问题! CSScomb(CSS梳理)是一个可以用来格式化和排序CSS属性的插件,官网地址http ...

  7. hihocoder Round #c1(hihoCoder太阁最新面经算法竞赛1 )

    Test链接:https://cn.vjudge.net/contest/231849 选自hihoCoder太阁最新面经算法竞赛1 更多Test:传送门 A:区间求差 给一组区间集合A和区间集合B, ...

  8. 「GXOI / GZOI2019」旧词

    题目 确定这不是思博题 看起来很神仙,本来以为是\([LNOI2014]LCA\)的加强版,结果发现一个点的贡献是\(s_i\times (deep_i^k-(deep_i-1)^k)\),\(s_i ...

  9. Vue2+Webpack创建vue项目

    相比较AngularJS和ReactJS,VueJS一直以轻量级,易上手称道.MVVM的开发模式也使前端从原先的DOM中解放出来,我们在不需要在维护视图和数据的统一上花大量时间,只需要关注于data的 ...

  10. Yii设置Cache缓存的方法

    先在配置文件components数组中加上: 'cache'=>array( 'class'=>'CFileCache'), 设置Cache: Yii::app()->cache-& ...