Description

You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.

Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.

Finally you ended up with the following conditions to building the castle:

  • \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
  • For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
  • \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.

As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.

Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.

Input

The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.

Output

Print the minimum number of spots you can occupy so the all the castle building conditions hold.

Examples

input

5 2

output

3

input

6 8

output

3

Note

Here are the heights of some valid castles:

  • n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
  • n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)

The first list for both cases is the optimal answer, 3 spots are occupied in them.

And here are some invalid ones:

  • n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
  • n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]

Solution

根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:

  • \(h_{1} \le H\)
  • \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
  • 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)

我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。

最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H​递增,再递减到1的序列,分情况处理。

对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。

对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。

大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}

CodeForces 985D Sand Fortress的更多相关文章

  1. Codeforces 985 D - Sand Fortress

    D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...

  2. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. CF985D Sand Fortress

    思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...

  4. Codeforces 985D

    题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...

  5. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  6. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  7. Educational Codeforces Round 44#985DSand Fortress+二分

    传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...

  8. Codeforces Round #355 (Div. 2)-C

    C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...

  9. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

随机推荐

  1. [翻译] GCDObjC

    GCDObjC https://github.com/mjmsmith/gcdobjc GCDObjC is an Objective-C wrapper for the most commonly ...

  2. SCCM OS播发

    SCCM OS播发1.在分发点启用PXE支持2.将启动映像包分发到分发点:需要将x86和x64都分发到分发点,如果只分发x64,在客户端pxe启动时会出现 no response from wds s ...

  3. 《C++ Primer Plus》读书笔记之十一—类继承

    第十三章 类继承 1.类继承:扩展和修改类. 2.公有继承格式:冒号指出B类的基类是A,B是派生类. class B :public A { ... }: 3.派生类对象包含基类对象.使用公有派生,基 ...

  4. ELK搭建实时日志分析平台之一ElasticSearch搭建

    文:铁乐与猫 系统:CentOS Linux release 7.3.1611 (Core) 注:我这里为测试和实验方便,ELK整套都装在同一台服务器环境中了,生产环境的话,可以分开搭建在不同的服务器 ...

  5. matlab 函数句柄@的介绍_什么是函数句柄(转)

    http://blog.csdn.net/kevinhg/article/details/8861774 http://www.ilovematlab.cn/thread-30375-1-1.html ...

  6. 高性能网站架构缓存——redis集群

    相信你已经对redis有一定的了解,并能够安装上,进行简单的使用了,但是在咱们的实际应用中,使用redis肯定不会使用单机版,不光是redis不能使用单机版,其他的也不会使用,所以今天我们来说一下re ...

  7. ZT Android 4.2 BT系统之蓝牙关闭过程全跟踪

    Android 4.2 BT系统之蓝牙关闭过程全跟踪 分类: android 2013-08-03 00:34 2252人阅读 评论(10) 收藏 举报 代码位置:       frameworks/ ...

  8. [转]Hadoop 读写数据流

    Hadoop文件读取 1)客户端通过调用FileSystem对象中的open()函数来读取它做需要的数据.FileSystem是HDFS中DistributedFileSystem的一个实例. 2)D ...

  9. 新手指南:Linux上vi(vim)编辑器使用教程

    vi(vim)是上Linux非常常用的编辑器,很多Linux发行版都默认安装了vi(vim).vi(vim)命令繁多但是如果使用灵活之后将会大大提高效率.vi是“visual interface”的缩 ...

  10. python第十六课——ascii码

    2.ascii码 美国设计出来的一张编码表,将涉及的字符都编号了,底层仍然还是进行二进制的运算: 记住:3个范围段 1).'0' --> 码值:48 2).'A' --> 码值:65 3) ...