CodeForces 985D Sand Fortress
Description
You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.
Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.
Finally you ended up with the following conditions to building the castle:
- \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
- For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
- \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.
As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.
Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.
Input
The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.
Output
Print the minimum number of spots you can occupy so the all the castle building conditions hold.
Examples
input
5 2
output
3
input
6 8
output
3
Note
Here are the heights of some valid castles:
- n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
- n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)
The first list for both cases is the optimal answer, 3 spots are occupied in them.
And here are some invalid ones:
- n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
- n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]
Solution
根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:
- \(h_{1} \le H\)
- \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
- 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)
我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。
最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H递增,再递减到1的序列,分情况处理。
对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。
对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。
大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}
CodeForces 985D Sand Fortress的更多相关文章
- Codeforces 985 D - Sand Fortress
D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...
- codeforces 985 D. Sand Fortress(二分+思维)
Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- CF985D Sand Fortress
思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...
- Codeforces 985D
题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...
- Educational Codeforces Round 44 (Rated for Div. 2)
题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...
- Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列
A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...
- Educational Codeforces Round 44#985DSand Fortress+二分
传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...
- Codeforces Round #355 (Div. 2)-C
C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...
- Codeforces 599C Day at the Beach(想法题,排序)
C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...
随机推荐
- Linux chattr 命令详解
常见命令参数 A:即Atime,告诉系统不要修改对这个文件的最后访问时间. S:即Sync,一旦应用程序对这个文件执行了写操作,使系统立刻把修改的结果写到磁盘. a:即Append Only,系统只允 ...
- 铁乐学python_Day42_锁和队列
铁乐学python_Day42_锁和队列 例:多个线程抢占资源的情况 from threading import Thread import time def work(): global n tem ...
- PHP设计模式系列 - 委托模式
委托模式 通过分配或委托其他对象,委托设计模式能够去除核心对象中的判决和复杂的功能性. 应用场景 设计了一个cd类,类中有mp3播放模式,和mp4播放模式 改进前,使用cd类的播放模式,需要在实例化的 ...
- html5 js 游戏的一篇博客 貌似不错
http://blog.csdn.net/lufy_legend/article/details/8888787
- 对象在hibernate中的状态
首先hibernate中对象的状态有三种:瞬态.游离态和持久态,三种状态转化的方法都是通过session来调用,瞬态到持久态的方法有save().saveOrUpdate().get().load() ...
- Hadoop HA on Yarn——集群启动
这里分两部分,第一部分是NameNode HA,第二部分是ResourceManager HA (ResourceManager HA是hadoop-2.4.1之后加上的) NameNode HA 1 ...
- Avito Code Challenge 2018
第一次打CF,很菜,A了三道水题,第四题好像是是数位DP,直接放弃了.rateing从初始的1500变成了1499,还是绿名,这就很尴尬.之后觉得后面的题目也没有想象的那么难(看通过人数)过两天吧剩下 ...
- Mysql数据库的mysql Schema 究竟有哪些东西& 手工注入的基础要领
#查看数据库版本号 mysql> select @@version; +------------+ | @@version | +------------+ | 5.5.16-log | +- ...
- Cobalt Strike 简单使用
1.运行服务端 其中afanti就是密码 2.客户端 用户名随意写,密码添afanti 3.创建listener 4.生成木马客户端 Attacks->Packages->Windows ...
- istio 配置解读
Istio在服务网络中统一提供了许多关键功能: 流量管理:控制服务之间的流量和API调用的流向,使得调用更可靠,并使网络在恶劣情况下更加健壮. 可观察性:了解服务之间的依赖关系,以及它们之间流量的本质 ...