\(\mathcal{Description}\)

  Link.

  给定 \(\{a_n\}\),求:

\[\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(a_i,a_j)
\]

  \(1\le n,a_i\le5\times10^4\)。

\(\mathcal{Solution}\)

  数论题在序列上搞不太现实,记最大值 \(m\),有 \(c_i\) 个 \(a_j=i\),推式子:

\[\begin{aligned}
\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(a_i,a_j)&=\sum_{i=1}^m\sum_{j=1}^m\frac{ij}{\gcd(i,j)}c_ic_j\\
&=\sum_{d=1}^m\sum_{i=1}^{\lfloor\frac{m}d\rfloor}\sum_{j=1}^{\lfloor\frac{m}d\rfloor}[\gcd(i,j)=1]dijc_ic_j\\
&=\sum_{d=1}^m\sum_{i=1}^{\lfloor\frac{m}d\rfloor}\sum_{j=1}^{\lfloor\frac{m}d\rfloor}dijc_ic_j\sum_{D|i\land D|j}\mu(D)~~~~(\text{Mobius 反演})\\
&=\sum_{d=1}^md\sum_{D=1}^{\lfloor\frac{m}d\rfloor}\mu(D)D^2\sum_{i=1}^{\lfloor\frac{m}{dD}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{dD}\rfloor}ijc_{idD}c_{jdD}~~~~(\text{交换枚举顺序})\\
&=\sum_{T=1}^mT\sum_{D|T}\mu(D)D\sum_{i=1}^{\lfloor\frac{m}T\rfloor}\sum_{j=1}^{\lfloor\frac{m}T\rfloor}ijc_{iT}c_{jT}~~~~(\text{改换枚举}~T=dD)\\
&=\sum_{T=1}^mT\left(\sum_{i=1}^{\lfloor\frac{m}T\rfloor}ic_{iT}\right)^2\sum_{D|T}\mu(D)D
\end{aligned}
\]

  \(\mathcal O(n+m\sqrt m)\) 算就好啦。

\(\mathcal{Code}\)

#include <cmath>
#include <cstdio> const int MAXN = 5e4;
int n, m, c[MAXN + 5];
int pn, pr[MAXN + 5], mu[MAXN + 5];
bool vis[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline void sieve ( const int n ) {
mu[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
if ( !vis[i] ) mu[pr[++ pn] = i] = -1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
vis[t] = true;
if ( !( i % pr[j] ) ) break;
mu[t] = -mu[i];
}
}
} int main () {
n = rint ();
for ( int i = 1, a; i <= n; ++ i ) {
++ c[a = rint ()];
if ( m < a ) m = a;
}
sieve ( m );
long long ans = 0;
for ( int i = 1; i <= m; ++ i ) {
long long a = 0, b = 0;
for ( int j = 1, t = m / i; j <= t; ++ j ) a += 1ll * j * c[i * j];
for ( int j = 1, t = sqrt ( i ); j <= t; ++ j ) {
if ( i % j ) continue;
b += mu[j] * j;
if ( j * j < i ) b += mu[i / j] * i / j;
}
ans += 1ll * i * a * a * b;
}
printf ( "%lld\n", ans );
return 0;
}

\(\mathcal{Details}\)

  推的时候把 \(ij\) 系数搞丢了自闭半天 qaq。

Solution -「洛谷 P3911」最小公倍数之和的更多相关文章

  1. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  2. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  3. Solution -「洛谷 P5236」「模板」静态仙人掌

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路.   \(n,q\le10^4\),\(m\ ...

  4. Solution -「洛谷 P4198」楼房重建

    \(\mathcal{Description}\)   Link.   给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...

  5. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  6. Solution -「洛谷 P6021」洪水

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...

  7. Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集.   \(n,m\le10^5 ...

  8. Solution -「洛谷 P4320」道路相遇

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...

  9. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

随机推荐

  1. spring boot + spring security +前后端分离【跨域】配置 + ajax的json传输数据

    1.前言 网上各个社区的博客参差不齐 ,给初学者很大的困扰 , 我琢磨了一天一夜,到各个社区找资料,然后不断测试,遇到各种坑,一言难尽啊,要么源码只有一部分,要么直接报错... 最后实在不行,直接去看 ...

  2. iview 按需引入解决加载慢的问题

    如果出现加载2s以上的情况请先查看服务器是否对大文件进行过压缩优化处理. 按照官方文档把iview引入到vue的项目中,全部引入的时候没问题.当按官方文档显示的按需加载是借助插件babel-plugi ...

  3. 05.python解析式与生成器表达式

    解析式和生成器表达式 列表解析式 列表解析式List Comprehension,也叫列表推导式 #生成一个列表,元素0-9,将每个元素加1后的平方值组成新的列表 x = [] for i in ra ...

  4. 一文搞定 Windows Terminal 设置与 zsh 安装 (非WSL)

    为 Windows Terminal 添加标签页 添加 Anaconda 标签页 在settings.json文件中的list列表中添加设置项: { // Make changes here to t ...

  5. Solon 开发,五、切面与环绕拦截

    Solon 开发 一.注入或手动获取配置 二.注入或手动获取Bean 三.构建一个Bean的三种方式 四.Bean 扫描的三种方式 五.切面与环绕拦截 六.提取Bean的函数进行定制开发 七.自定义注 ...

  6. Solon Web 开发,二、开发知识准备

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  7. C++ 基本类型的大小

    C++的基本类型: char bool (unsigned) short (int) (unsigned) int (unsigned) long (int) (unsigned) long long ...

  8. WSL删除子系统后无法重装

    问题 WSL卸载后安装error 解决办法 UWP应用卸载后没有删除目录下的文件 C:\Users\wwwfe\AppData\Local\Packages路径下删除就可以了 再次安装会卡顿很久,可能 ...

  9. 【简记】SpringBoot禁用Swagger

    楔子 Swagger 是 Java Web 开发中常用的接口文档生成类库,在开发和前后端联调时使用它来模拟接口调用能提高开发效率.但是,在生产环境可能并不需要它,一个原因是启用它会延长程序启动时间(动 ...

  10. Spring中的单例模式

    Spring中的单例模式 单例模式的介绍 1.1 简介 ​ 保证整个应用中某个实例有且只有一个 1.2作用 保证一个类仅有一个实例,并且提供一个访问它的全局访问点. 单例模式的优点和缺点 单例模式的优 ...