Solution -「HDU 1788」CRT again
\(\mathcal{Description}\)
Link.
解同余方程组:
\]
其中 \(i=1,2,\dots,n\)。
\(n\le10\),\(a<m_i<100\),多测(假设常规 CRT 不可过)。
\(\mathcal{Solution}\)
显:
\]
复杂度 \(\mathcal O(n\log\max\{m_i\})\)(只是优化了常数 www)。
\(\mathcal{Code}\)
#include <cstdio>
typedef unsigned long long ULL;
inline ULL gcd ( const ULL a, const ULL b ) { return b ? gcd ( b, a % b ) : a; }
int main () {
int n, a;
while ( ~ scanf ( "%d %d", &n, &a ) && n | a ) {
ULL ans = 1;
for ( int i = 1, m; i <= n; ++ i ) {
scanf ( "%d", &m );
ans *= m / gcd ( ans, m );
}
printf ( "%llu\n", ans - a );
}
return 0;
}
Solution -「HDU 1788」CRT again的更多相关文章
- Solution -「HDU 6875」Yajilin
\(\mathcal{Description}\) Link.(HDU 裂开了先放个私链 awa.) 在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- Solution -「HDU 6643」Ridiculous Netizens
\(\mathcal{Description}\) Link. 给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...
- Solution -「HDU #6566」The Hanged Man
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「HDU」Professor Ben
Description 有 \(Q\) 个询问.每次给定一个正整数 \(n\),求它的所有因数的质因数个数的和. Solution 就讲中间的一个 Trick. 我们定义正整数 \(x\) 有 \(f ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
随机推荐
- Leetcode算法系列(链表)之删除链表倒数第N个节点
Leetcode算法系列(链表)之删除链表倒数第N个节点 难度:中等给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点.示例:给定一个链表: 1->2->3->4-&g ...
- Servlet初级学习加入数据库操作(一)
需要的源代码地址: https://url56.ctfile.com/f/34653256-527822631-2e255a(访问密码:7567) 将页面中的数据逐步替换为数据库管理 准备一个连接数据 ...
- mysql之突破secure_file_priv写webshell
在某些情况下,当我们进入了一个网站的phpMyAdmin时,想通过select into outfile来写shell,但是通常都会报错. 这是因为在mysql 5.6.34版本以后 secure_f ...
- kali linux2020 虚拟机改root密码
kali在2020版的更新中,好多小伙伴登不进root账号,这里来教大家怎样改root账户的密码 1.当我们打开虚拟机看到这个界面的时候,按e进入编辑模式 2.在编辑模式中,"quite s ...
- RabbitMQ 中的分布式,普通 cluster 模式的构建
RabbitMQ 如何做分布式 前言 集群配置方案 cluster 普通模式 镜像模式 federation shovel 节点类型 RAM node Disk node 集群的搭建 1.局域网配置 ...
- Express框架的简单使用
Express框架的简单使用 这个框架是基于Node.js的框架平台 需要先安装node.js 安装完node.js后使用指令操作 npm init --yes 初始化 npm i express 安 ...
- WebGPU图形编程(3):构建三角形图元<学习引自徐博士教程>
一.首先修改你的index.html文件 请注意主要在html页面修改添加的是需要加选择项:"triangle-list"和"triangle-strip",如 ...
- MyCms 自媒体 CMS 系统 v2.6,SEO 优化升级
MyCms 是一款基于Laravel开发的开源免费的自媒体博客CMS系统,助力开发者知识技能变现. MyCms 基于Apache2.0开源协议发布,免费且不限制商业使用,欢迎持续关注我们. V2.6 ...
- java内部类概述和修饰符
1 package face_09; 2 /* 3 * 内部类访问特点: 4 * 1,内部类可以直接访问外部类的成员. 5 * 2,外部类要访问内部类,必须建立内部类的对象. 6 * 7 * 一把用于 ...
- linux解析映射文件与自动加载脚本
目录 一 :解析映射文件 1.解析文件的由来之主机名: 2.解析映射文件(DNS) 二:磁盘挂载文件 三:开机自动加载脚本 一 :解析映射文件 1.解析文件的由来之主机名: 无论是在局域网还是在INT ...