[cf1240F]Football
(事实上,总是可以让每一场都比,因此$w_{i}$并没有意义)
当$k=2$时,有如下做法——
新建一个点,向所有奇度数的点连边,并对得到的图求欧拉回路,那么只需要将欧拉回路上的边交替染色,即可保证$|s_{i,1}-s_{i,2}|\le 1$(路径长度为奇数时的起点),去掉新建的点后仍有$|s_{i,1}-s_{i,2}|\le 2$,也即合法
当$k$任意时,有如下做法——
随机一组方案,找到两种不合法的颜色$a$和$b$(即$\exists i,|s_{i,a}-s_{i,b}|\ge 3$),将图中颜色为$a$或$b$的边用$k=2$时的方式重新染色,重复此过程直至找到不到$a$和$b$,显然此时即合法
考虑这一做法的复杂度(和有限性),令$C=\sum_{i=1}^{n}\sum_{j=1}^{k}s_{i,j}^{2}$,考虑调整对$C$的影响:假设调整后的为$s'_{i,j}$,代入该式即使得$C$减少$\sum_{i=1}^{n}(s_{i,a}^{2}+s_{i,b}^{2}-s{'}_{i,a}^{2}-s{'}_{i,b}^{2})$
由于$s_{i,a}+s_{i,b}$固定,因此$|s'_{i,a}-s'_{i,b}|\le 1$时必然取到最小,即每一项该值均非负
另一方面,对于$|s_{i,a}-s_{i,b}|\ge 3$的位置,该值至少为4,也即$C$至少减少4
同时$C$非负,因此轮数为$o(C)$,其实际意义可以看作选择两条边满足有公共点且颜色相同,那么先确定其中一条边,由于没有重边,显然另一条边至多有$o(n)$种,即$C\le nm$
另外,每一轮调整复杂度为$o(n\log k+m)$(找$x,y$和求欧拉回路)
时间复杂度为$o(n^{2}m\log k+nm^{2})$,由于跑不满,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define M 1005
5 #define fi first
6 #define se second
7 struct Edge{
8 int nex,to;
9 }edge[N+M<<1];
10 pair<int,int>e[M];
11 multiset<int>S[N];
12 int n,m,t,E,P,head[N],vis[N+M],ans[M],sum[N][M];
13 void add(int x,int y){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 head[x]=E++;
17 }
18 void dfs(int k){
19 for(int i=head[k];i!=-1;i=edge[i].nex)
20 if (vis[i>>1]<0){
21 vis[i>>1]=0;
22 dfs(edge[i].to);
23 vis[i>>1]=P,P^=1;
24 }
25 }
26 int main(){
27 srand(time(0));
28 scanf("%d%d%d",&n,&m,&t);
29 for(int i=1;i<=n;i++)scanf("%*d");
30 for(int i=1;i<=m;i++)scanf("%d%d",&e[i].fi,&e[i].se);
31 for(int i=1;i<=m;i++){
32 ans[i]=rand()%t+1;
33 sum[e[i].fi][ans[i]]++;
34 sum[e[i].se][ans[i]]++;
35 }
36 for(int i=1;i<=n;i++)
37 for(int j=1;j<=t;j++)S[i].insert(sum[i][j]);
38 while (1){
39 int x=0,y=0;
40 for(int i=1;i<=n;i++)
41 if ((*--S[i].end())-(*S[i].begin())>=3){
42 x=y=1;
43 for(int j=2;j<=t;j++){
44 if (sum[i][j]>sum[i][x])x=j;
45 if (sum[i][j]<sum[i][y])y=j;
46 }
47 break;
48 }
49 if ((!x)&&(!y))break;
50 E=P=0;
51 memset(head,-1,sizeof(head));
52 for(int i=1;i<=m;i++)
53 if ((ans[i]==x)||(ans[i]==y)){
54 add(e[i].fi,e[i].se);
55 add(e[i].se,e[i].fi);
56 }
57 for(int i=1;i<=n;i++)
58 if ((sum[i][x]+sum[i][y])&1)add(0,i),add(i,0);
59 memset(vis,-1,sizeof(vis));
60 for(int i=1;i<=n;i++)dfs(i);
61 for(int i=1;i<=n;i++){
62 S[i].erase(S[i].find(sum[i][x]));
63 S[i].erase(S[i].find(sum[i][y]));
64 sum[i][x]=sum[i][y]=0;
65 }
66 for(int i=1,j=0;i<=m;i++)
67 if ((ans[i]==x)||(ans[i]==y)){
68 if (vis[j])ans[i]=x;
69 else ans[i]=y;
70 sum[e[i].fi][ans[i]]++;
71 sum[e[i].se][ans[i]]++;
72 j++;
73 }
74 for(int i=1;i<=n;i++){
75 S[i].insert(sum[i][x]);
76 S[i].insert(sum[i][y]);
77 }
78 }
79 for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
80 return 0;
81 }
[cf1240F]Football的更多相关文章
- POJ 3071 Football
很久以前就见过的...最基本的概率DP...除法配合位运算可以很容易的判断下一场要和谁比. from——Dinic算法 Football Time ...
- Football Foundation (FOFO) TOJ 2556
The football foundation (FOFO) has been researching on soccer; they created a set of sensors to desc ...
- 17111 Football team
时间限制:1000MS 内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题 语言: C++;C Description As every one known, a footbal ...
- CodeForces 432B Football Kit
Football Kit Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Subm ...
- Football(POJ3071)
Football Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3469 Accepted: 1782 Descript ...
- 16年大连网络赛 1006 Football Games
题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?cid=725&pid=1006 Football Games Time ...
- 三分--Football Goal(面积最大)
B - Football Goal Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Su ...
- HDU5873:Football Games
题目链接: Football Games 分析: 先将分数排序,然后 设当前队编号为p,设个指针为p+1,然后p>1,每次p-=2,指针右移一位p==1,指针指向的队-=1p==0,从指针开始到 ...
- Codeforces Gym 100425H H - Football Bets 构造
H - Football BetsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...
随机推荐
- 每日总结:String类(2021.10.6)
String创建的字符串存储在公共池中 如: String s1="Runoob": new创建的字符串对象在堆上 如: String s2=new String("Ru ...
- SpringBoot-MVC自动配置原理
SpringBoot对SpringMVC做了哪些配置,如何扩展,如何定制? 文档地址 :https://docs.spring.io/spring-boot/docs/2.2.5.RELEASE/re ...
- vps实现私人代码托管并用nginx部署hexo
个人博客 原本我的博客是通过github pages搭建的,但由于一些众所周知的原因,即使套上了CDN依旧是访问状态令人堪忧,经常会造成各种各样的问题,并且由于不存在服务器也不好进行进一步的管理,更不 ...
- Visual Studio 重置窗口布局
Visual Studio 重置窗口布局
- kivy浮点布局
from kivy.app import App from kivy.uix.floatlayout import FloatLayout class FloatLayoutWidget(FloatL ...
- HTTP请求如何带参
这两天正好作一份API的接口文档,关于HTTP request如何传递参数不是很清楚,这里转载了他人的文档,让我明白了很多.. http://tomfish88.iteye.com/category/ ...
- [Beta]the Agiles Scrum Meeting 6
会议时间:2020.5.20 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 issue yjy 帮助成员解决配置环境问题 tq 增加功能:添加多个评测机 评测部分增加更多评测指标 ...
- nio之缓冲区(Buffer)理解
一.缓冲区简介 Nio中的 Buffer 是用于存储特定基础类型的一个容器.为了能熟练的使用 Nio中的各种 Buffer , 我们需要理解 Buffer 中的 三个重要 的属性. 1. capaci ...
- FastAPI 学习之路(二十八)使用密码和 Bearer 的简单 OAuth2
OAuth2 规定在使用(我们打算用的)「password 流程」时,客户端/用户必须将 username 和 password 字段作为表单数据发送.我们看下在我们应该去如何实现呢. 我们写一个登录 ...
- HZOI帝国2019欢乐时刻
前言: update 只是恢复一下原来手残删掉的博客,不是在水,嘤嘤嘤 update 以后改成Stack,但是之前的就懒得改了... by 10.31 为了窝的访问量大家的好心情,模仿学长搞了一个这个 ...