不难发现,操作1可以看作如下操作:对于删去$a_{1},a_{2},...,a_{k}$后的每一个连通块(的点集)$V$,令$\forall x\in V,x$的收益加上$s$(其中$s=\sum_{x\in V}c_{x}$)

考虑建立类似于虚树的东西,即将每一个$a_{i}$连到第一个在$a_{i}$中的祖先,接下来遍历这棵新树(森林),对每一个节点枚举其在原树上的所有儿子,考虑该儿子的子树,分类讨论:

1.若这棵子树中没有$a_{i}$中的点,直接暴力修改(对dfs序维护线段树)

2.若这棵子树中有$a_{i}$中的点,找到还是其儿子的点(同时在其该子树中),将这些子树的dfs区间在整个区间中删掉,即将整个区间划分为若干段分别查询后求和并(分别)修改

关于如何建立前者的虚树,可以将所有节点子树对应的dfs区间排序后遍历一遍,或者也可以建立虚树之后再删除不在$a_{i}$中的点,时间复杂度均为$o(k\log n)$

但是,这样的操作次数(指对线段树)并不是$o(k)$,瓶颈是在于第1类(第2类虽然看似复杂但仔细分析不难发现其是$o(k)$的),考虑如何处理:

先树链剖分预处理,并找到所有第2类中的儿子和重儿子,用之前的方式处理(这里只有$o(k)$次),并在该节点上打一个修改标记,查询时$v$到根路径上根据重链顶端的父亲的标记对该重链顶端子树修改

(为了方便,可以将第2类中的轻儿子再减去子树和)

另外,还有一些细节问题:

1.需要去掉自己与自己贸易的情况,可以通过对这$a_{i}$个点的收益补上$c_{a_{i}}$,并再在操作2时将此时的答案额外减去$mc_{v}$即可(其中$m$为之前操作1的次数),显然这容易维护

2.如果1不在$a_{i}$中,实际上忽略了最外部的连通块(严格来说即包含1的连通块),可以通过建边$(0,1)$并将0强制加入$a_{i}$中解决(或特判)

综上,总复杂度为$o((q+\sum k)\log n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 #define fi first
6 #define se second
7 #define L (k<<1)
8 #define R (L+1)
9 #define mid (l+r>>1)
10 struct Edge{
11 int nex,to;
12 }edge[N<<1];
13 int E,t,n,m,q,p,x,y,head[N],c[N],sz[N],mx[N],dep[N],fa[N][20],dfn[N],idfn[N],top[N],st[N],tag[N];
14 ll sum[N],f[N];
15 pair<int,int>a[N];
16 vector<int>v[N];
17 int lowbit(int k){
18 return (k&(-k));
19 }
20 ll get_sum(int k){
21 return sum[dfn[k]+sz[k]-1]-sum[dfn[k]-1];
22 }
23 void add(int x,int y){
24 edge[E].nex=head[x];
25 edge[E].to=y;
26 head[x]=E++;
27 }
28 int get_son(int x,int y){
29 for(int i=19;i>=0;i--)
30 if (dep[fa[x][i]]>dep[y])x=fa[x][i];
31 return x;
32 }
33 void dfs1(int k,int f,int s){
34 sz[k]=1,mx[k]=0,dep[k]=s,fa[k][0]=f;
35 for(int i=1;i<20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
36 for(int i=head[k];i!=-1;i=edge[i].nex)
37 if (edge[i].to!=f){
38 dfs1(edge[i].to,k,s+1);
39 sz[k]+=sz[edge[i].to];
40 if ((!mx[k])||(sz[mx[k]]<sz[edge[i].to]))mx[k]=edge[i].to;
41 }
42 }
43 void dfs2(int k,int f,int t){
44 dfn[k]=++dfn[0],idfn[dfn[0]]=k,top[k]=t;
45 if (mx[k])dfs2(mx[k],k,t);
46 for(int i=head[k];i!=-1;i=edge[i].nex)
47 if ((edge[i].to!=f)&&(edge[i].to!=mx[k]))dfs2(edge[i].to,k,edge[i].to);
48 }
49 void update(int k,ll x){
50 while (k<=n){
51 f[k]+=x;
52 k+=lowbit(k);
53 }
54 }
55 void update(int x,int y,ll z){
56 update(x,z);
57 if (y<n)update(y+1,-z);
58 }
59 void dfs(int k){
60 if (k)tag[k]++;
61 bool flag=0;
62 for(int i=0,j=0;i<v[k].size();i=j){
63 int son=get_son(v[k][i],k);
64 ll s=get_sum(son);
65 while ((j<v[k].size())&&(get_son(v[k][j],k)==son))s-=get_sum(v[k][j++]);
66 update(dfn[son],dfn[son]+sz[son]-1,s);
67 for(int t=i;t<j;t++)update(dfn[v[k][t]],dfn[v[k][t]]+sz[v[k][t]]-1,-s);
68 if (son==mx[k])flag=1;
69 else update(dfn[son],dfn[son]+sz[son]-1,-get_sum(son));
70 }
71 if ((!flag)&&(mx[k]))update(dfn[mx[k]],dfn[mx[k]]+sz[mx[k]]-1,get_sum(mx[k]));
72 for(int i=0;i<v[k].size();i++)dfs(v[k][i]);
73 v[k].clear();
74 }
75 ll query(int k){
76 ll ans=0;
77 for(int i=dfn[k];i;i-=lowbit(i))ans+=f[i];
78 ans-=(ll)m*c[k];
79 while (k){
80 ans+=tag[fa[top[k]][0]]*get_sum(top[k]);
81 k=fa[top[k]][0];
82 }
83 return ans;
84 }
85 int main(){
86 scanf("%d",&t);
87 while (t--){
88 scanf("%d%d",&n,&q);
89 E=m=dfn[0]=0;
90 memset(head,-1,sizeof(head));
91 memset(tag,0,sizeof(tag));
92 memset(f,0,sizeof(f));
93 for(int i=1;i<n;i++){
94 scanf("%d%d",&x,&y);
95 add(x,y),add(y,x);
96 }
97 dfs1(1,0,1),dfs2(1,0,1);
98 dfn[0]=mx[0]=1,sz[0]=n;
99 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
100 for(int i=1;i<=n;i++)sum[i]=sum[i-1]+c[idfn[i]];
101 for(int i=1;i<=q;i++){
102 scanf("%d%d",&p,&x);
103 if (p==1){
104 m++;
105 for(int j=1;j<=x;j++){
106 scanf("%d",&y);
107 update(dfn[y],dfn[y],c[y]);
108 a[j]=make_pair(dfn[y],dfn[y]+sz[y]-1);
109 }
110 sort(a+1,a+x+1);
111 st[0]=0;
112 for(int j=1;j<=x;j++){
113 while ((st[0])&&(a[st[st[0]]].se<a[j].se))st[0]--;
114 v[idfn[a[st[st[0]]].fi]].push_back(idfn[a[j].fi]);
115 st[++st[0]]=j;
116 }
117 dfs(0);
118 }
119 if (p==2)printf("%lld\n",query(x));
120 }
121 }
122 return 0;
123 }

[hdu7076]ZYB's kingdom的更多相关文章

  1. 线段树 - ZYB's Premutation

    ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ...

  2. Constructing Roads In JGShining's Kingdom(HDU1025)(LCS序列的变行)

    Constructing Roads In JGShining's Kingdom  HDU1025 题目主要理解要用LCS进行求解! 并且一般的求法会超时!!要用二分!!! 最后蛋疼的是输出格式的注 ...

  3. 拓扑排序 --- hdu 4948 : Kingdom

    Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  4. codeforces 613D:Kingdom and its Cities

    Description Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. Ho ...

  5. Bestcoder round #65 && hdu 5593 ZYB's Tree 树形dp

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  6. Bestcoder round #65 && hdu 5592 ZYB's Premutation 线段树

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  7. HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

随机推荐

  1. Vulnhub实战-JIS-CTF_VulnUpload靶机👻

    Vulnhub实战-JIS-CTF_VulnUpload靶机 下载地址:http://www.vulnhub.com/entry/jis-ctf-vulnupload,228/ 你可以从上面地址获取靶 ...

  2. 怎样将.h文件添加到项目中

    作为C++的初学者,在运行别人的程序时,第一个遇到的问题就是无法将程序中写到的.h文件包含到项目中来.下面来写一下处理方法.本文以easyx.h为例进行说明 首先右键你的工程 选择Properties ...

  3. Elasticsearch 存储成本省 60%,稿定科技干货分享

    背景 稿定科技旗下稿定设计产品是一个聚焦商业设计的多场景在线设计平台,打破了软硬件间的技术限制,汇集创意内容与设计工具于一体,为不同场景下的设计需求提供优质的解决方案,满足图片.视频等全类型媒介的设计 ...

  4. css实现水平-垂直居中的方法

    * 定宽居中: 1.absolute+负margin 2.absolute+margin:auto 3.absolute--calc 4.min-height:100vh + flex + margi ...

  5. 性能利器 Takin 来了!首个生产环境全链路压测平台正式开源

    6 月 25 日,国内知名的系统高可用专家数列科技宣布开源旗下核心产品能力,对外开放生产全链路压测平台产品的源代码,并正式命名为 Takin. 目前中国人寿.顺丰科技.希音.中通快递.中国移动.永辉超 ...

  6. Java:NIO 学习笔记-1

    Java:NIO 学习笔记-1 说明:本笔记是根据bilibili上 尚硅谷 的课程 NIO视频 而做的笔记 主要内容 Java NIO 简介 Java NIO 与 IO 的主要区别 缓冲区(Buff ...

  7. 混合开发框架Flutter

    Flutter开发简介与其他的混合开发的对比 为什么要使用Flutter? 跨平台技术简介 Hybrid技术简介 QT简介 Flutter简介 为什么要使用Flutter? Flutter有什么优势? ...

  8. Vue3+Typescript+Node.js实现微信端公众号H5支付(JSAPI v3)教程--各种填坑

    ----微信支付文档,不得不说,挺乱!(吐槽截止) 功能背景 微信公众号中,点击菜单或者扫码,打开公众号中的H5页面,进行支付. 一.技术栈 前端:Vue:3.0.0,typescript:3.9.3 ...

  9. spring session实现session统一管理(jdbc实现)

    最近在看一些关于spring session 的知识,特做一个笔记记录一下. 在项目中经常会遇到这么一种情况,同一个web项目有时需要部署多份,然后使用nginx实现负载均衡,那么遇到的问题就是,部署 ...

  10. 关于评论区empty。。。

    空荡荡的毫无人烟,博主希望路过的小哥哥/小姐姐(几率较小)留下些什么--