不难发现,操作1可以看作如下操作:对于删去$a_{1},a_{2},...,a_{k}$后的每一个连通块(的点集)$V$,令$\forall x\in V,x$的收益加上$s$(其中$s=\sum_{x\in V}c_{x}$)

考虑建立类似于虚树的东西,即将每一个$a_{i}$连到第一个在$a_{i}$中的祖先,接下来遍历这棵新树(森林),对每一个节点枚举其在原树上的所有儿子,考虑该儿子的子树,分类讨论:

1.若这棵子树中没有$a_{i}$中的点,直接暴力修改(对dfs序维护线段树)

2.若这棵子树中有$a_{i}$中的点,找到还是其儿子的点(同时在其该子树中),将这些子树的dfs区间在整个区间中删掉,即将整个区间划分为若干段分别查询后求和并(分别)修改

关于如何建立前者的虚树,可以将所有节点子树对应的dfs区间排序后遍历一遍,或者也可以建立虚树之后再删除不在$a_{i}$中的点,时间复杂度均为$o(k\log n)$

但是,这样的操作次数(指对线段树)并不是$o(k)$,瓶颈是在于第1类(第2类虽然看似复杂但仔细分析不难发现其是$o(k)$的),考虑如何处理:

先树链剖分预处理,并找到所有第2类中的儿子和重儿子,用之前的方式处理(这里只有$o(k)$次),并在该节点上打一个修改标记,查询时$v$到根路径上根据重链顶端的父亲的标记对该重链顶端子树修改

(为了方便,可以将第2类中的轻儿子再减去子树和)

另外,还有一些细节问题:

1.需要去掉自己与自己贸易的情况,可以通过对这$a_{i}$个点的收益补上$c_{a_{i}}$,并再在操作2时将此时的答案额外减去$mc_{v}$即可(其中$m$为之前操作1的次数),显然这容易维护

2.如果1不在$a_{i}$中,实际上忽略了最外部的连通块(严格来说即包含1的连通块),可以通过建边$(0,1)$并将0强制加入$a_{i}$中解决(或特判)

综上,总复杂度为$o((q+\sum k)\log n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 #define fi first
6 #define se second
7 #define L (k<<1)
8 #define R (L+1)
9 #define mid (l+r>>1)
10 struct Edge{
11 int nex,to;
12 }edge[N<<1];
13 int E,t,n,m,q,p,x,y,head[N],c[N],sz[N],mx[N],dep[N],fa[N][20],dfn[N],idfn[N],top[N],st[N],tag[N];
14 ll sum[N],f[N];
15 pair<int,int>a[N];
16 vector<int>v[N];
17 int lowbit(int k){
18 return (k&(-k));
19 }
20 ll get_sum(int k){
21 return sum[dfn[k]+sz[k]-1]-sum[dfn[k]-1];
22 }
23 void add(int x,int y){
24 edge[E].nex=head[x];
25 edge[E].to=y;
26 head[x]=E++;
27 }
28 int get_son(int x,int y){
29 for(int i=19;i>=0;i--)
30 if (dep[fa[x][i]]>dep[y])x=fa[x][i];
31 return x;
32 }
33 void dfs1(int k,int f,int s){
34 sz[k]=1,mx[k]=0,dep[k]=s,fa[k][0]=f;
35 for(int i=1;i<20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
36 for(int i=head[k];i!=-1;i=edge[i].nex)
37 if (edge[i].to!=f){
38 dfs1(edge[i].to,k,s+1);
39 sz[k]+=sz[edge[i].to];
40 if ((!mx[k])||(sz[mx[k]]<sz[edge[i].to]))mx[k]=edge[i].to;
41 }
42 }
43 void dfs2(int k,int f,int t){
44 dfn[k]=++dfn[0],idfn[dfn[0]]=k,top[k]=t;
45 if (mx[k])dfs2(mx[k],k,t);
46 for(int i=head[k];i!=-1;i=edge[i].nex)
47 if ((edge[i].to!=f)&&(edge[i].to!=mx[k]))dfs2(edge[i].to,k,edge[i].to);
48 }
49 void update(int k,ll x){
50 while (k<=n){
51 f[k]+=x;
52 k+=lowbit(k);
53 }
54 }
55 void update(int x,int y,ll z){
56 update(x,z);
57 if (y<n)update(y+1,-z);
58 }
59 void dfs(int k){
60 if (k)tag[k]++;
61 bool flag=0;
62 for(int i=0,j=0;i<v[k].size();i=j){
63 int son=get_son(v[k][i],k);
64 ll s=get_sum(son);
65 while ((j<v[k].size())&&(get_son(v[k][j],k)==son))s-=get_sum(v[k][j++]);
66 update(dfn[son],dfn[son]+sz[son]-1,s);
67 for(int t=i;t<j;t++)update(dfn[v[k][t]],dfn[v[k][t]]+sz[v[k][t]]-1,-s);
68 if (son==mx[k])flag=1;
69 else update(dfn[son],dfn[son]+sz[son]-1,-get_sum(son));
70 }
71 if ((!flag)&&(mx[k]))update(dfn[mx[k]],dfn[mx[k]]+sz[mx[k]]-1,get_sum(mx[k]));
72 for(int i=0;i<v[k].size();i++)dfs(v[k][i]);
73 v[k].clear();
74 }
75 ll query(int k){
76 ll ans=0;
77 for(int i=dfn[k];i;i-=lowbit(i))ans+=f[i];
78 ans-=(ll)m*c[k];
79 while (k){
80 ans+=tag[fa[top[k]][0]]*get_sum(top[k]);
81 k=fa[top[k]][0];
82 }
83 return ans;
84 }
85 int main(){
86 scanf("%d",&t);
87 while (t--){
88 scanf("%d%d",&n,&q);
89 E=m=dfn[0]=0;
90 memset(head,-1,sizeof(head));
91 memset(tag,0,sizeof(tag));
92 memset(f,0,sizeof(f));
93 for(int i=1;i<n;i++){
94 scanf("%d%d",&x,&y);
95 add(x,y),add(y,x);
96 }
97 dfs1(1,0,1),dfs2(1,0,1);
98 dfn[0]=mx[0]=1,sz[0]=n;
99 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
100 for(int i=1;i<=n;i++)sum[i]=sum[i-1]+c[idfn[i]];
101 for(int i=1;i<=q;i++){
102 scanf("%d%d",&p,&x);
103 if (p==1){
104 m++;
105 for(int j=1;j<=x;j++){
106 scanf("%d",&y);
107 update(dfn[y],dfn[y],c[y]);
108 a[j]=make_pair(dfn[y],dfn[y]+sz[y]-1);
109 }
110 sort(a+1,a+x+1);
111 st[0]=0;
112 for(int j=1;j<=x;j++){
113 while ((st[0])&&(a[st[st[0]]].se<a[j].se))st[0]--;
114 v[idfn[a[st[st[0]]].fi]].push_back(idfn[a[j].fi]);
115 st[++st[0]]=j;
116 }
117 dfs(0);
118 }
119 if (p==2)printf("%lld\n",query(x));
120 }
121 }
122 return 0;
123 }

[hdu7076]ZYB's kingdom的更多相关文章

  1. 线段树 - ZYB's Premutation

    ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ...

  2. Constructing Roads In JGShining's Kingdom(HDU1025)(LCS序列的变行)

    Constructing Roads In JGShining's Kingdom  HDU1025 题目主要理解要用LCS进行求解! 并且一般的求法会超时!!要用二分!!! 最后蛋疼的是输出格式的注 ...

  3. 拓扑排序 --- hdu 4948 : Kingdom

    Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  4. codeforces 613D:Kingdom and its Cities

    Description Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. Ho ...

  5. Bestcoder round #65 && hdu 5593 ZYB's Tree 树形dp

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  6. Bestcoder round #65 && hdu 5592 ZYB's Premutation 线段树

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  7. HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

随机推荐

  1. Ysoserial Commons Collections3分析

    Ysoserial Commons Collections3分析 写在前面 CommonsCollections Gadget Chains CommonsCollection Version JDK ...

  2. js 改变this指向的三种方法 bind call apply

    先了解下bind call apply 的注意点 bind 需要手动调用 第一个参数 this 要指向的对象,后面是 散列的参数 call 不需要手动调用 第一个参数 this 要指向的对象,后面是 ...

  3. 【MySQL】MySQL(三)存储过程和函数、触发器、事务

    MySQL存储过程和函数 存储过程和函数的概念 存储过程和函数是 事先经过编译并存储在数据库中的一段 SQL 语句的集合 存储过程和函数的好处 存储过程和函数可以重复使用,减轻开发人员的工作量.类似于 ...

  4. 初学python-day4 字典(已更新完)

  5. HTTP请求如何带参

    这两天正好作一份API的接口文档,关于HTTP request如何传递参数不是很清楚,这里转载了他人的文档,让我明白了很多.. http://tomfish88.iteye.com/category/ ...

  6. SpringBoot加密配置属性

    一.背景 在系统中的运行过程中,存在很多的配置属性,比如: 数据库配置.阿里云配置 等等,这些配置有些属性是比较敏感的,是不应直接以明文的方式出现在配置文件中,因此对于这些配置我们就需要加密来处理. ...

  7. hdu 5183 Negative and Positive (NP)(STL-集合【HASH】)

    题意: When given an array (a0,a1,a2,⋯an−1) and an integer K, you are expected to judge whether there i ...

  8. 编译安装mysql和zabbix,xtrabackup数据库备份

    xtrabackup参考文章 https://www.cnblogs.com/linuxk/p/9372990.html 下载5.7的mysql 社区版包 https://cdn.mysql.com/ ...

  9. 彻底解决SLF4J的日志冲突的问题

    今天公司同事上线时发现,有的机器打印了日志,而有的机器则一条日志也没有打.以往都是没有问题的. 因此猜测是这次开发间接引入新的日志jar包,日志冲突导致未打印. 排查代码发现,系统使用的是SLF4J框 ...

  10. Linux部署Apollo+.Net Core简单使用

    Apollo官方网站非常详细,以下只是本人学习过程的整理 一.概念 Apollo(阿波罗)是一款可靠的分布式配置管理中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并 ...