不难发现,操作1可以看作如下操作:对于删去$a_{1},a_{2},...,a_{k}$后的每一个连通块(的点集)$V$,令$\forall x\in V,x$的收益加上$s$(其中$s=\sum_{x\in V}c_{x}$)

考虑建立类似于虚树的东西,即将每一个$a_{i}$连到第一个在$a_{i}$中的祖先,接下来遍历这棵新树(森林),对每一个节点枚举其在原树上的所有儿子,考虑该儿子的子树,分类讨论:

1.若这棵子树中没有$a_{i}$中的点,直接暴力修改(对dfs序维护线段树)

2.若这棵子树中有$a_{i}$中的点,找到还是其儿子的点(同时在其该子树中),将这些子树的dfs区间在整个区间中删掉,即将整个区间划分为若干段分别查询后求和并(分别)修改

关于如何建立前者的虚树,可以将所有节点子树对应的dfs区间排序后遍历一遍,或者也可以建立虚树之后再删除不在$a_{i}$中的点,时间复杂度均为$o(k\log n)$

但是,这样的操作次数(指对线段树)并不是$o(k)$,瓶颈是在于第1类(第2类虽然看似复杂但仔细分析不难发现其是$o(k)$的),考虑如何处理:

先树链剖分预处理,并找到所有第2类中的儿子和重儿子,用之前的方式处理(这里只有$o(k)$次),并在该节点上打一个修改标记,查询时$v$到根路径上根据重链顶端的父亲的标记对该重链顶端子树修改

(为了方便,可以将第2类中的轻儿子再减去子树和)

另外,还有一些细节问题:

1.需要去掉自己与自己贸易的情况,可以通过对这$a_{i}$个点的收益补上$c_{a_{i}}$,并再在操作2时将此时的答案额外减去$mc_{v}$即可(其中$m$为之前操作1的次数),显然这容易维护

2.如果1不在$a_{i}$中,实际上忽略了最外部的连通块(严格来说即包含1的连通块),可以通过建边$(0,1)$并将0强制加入$a_{i}$中解决(或特判)

综上,总复杂度为$o((q+\sum k)\log n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 #define fi first
6 #define se second
7 #define L (k<<1)
8 #define R (L+1)
9 #define mid (l+r>>1)
10 struct Edge{
11 int nex,to;
12 }edge[N<<1];
13 int E,t,n,m,q,p,x,y,head[N],c[N],sz[N],mx[N],dep[N],fa[N][20],dfn[N],idfn[N],top[N],st[N],tag[N];
14 ll sum[N],f[N];
15 pair<int,int>a[N];
16 vector<int>v[N];
17 int lowbit(int k){
18 return (k&(-k));
19 }
20 ll get_sum(int k){
21 return sum[dfn[k]+sz[k]-1]-sum[dfn[k]-1];
22 }
23 void add(int x,int y){
24 edge[E].nex=head[x];
25 edge[E].to=y;
26 head[x]=E++;
27 }
28 int get_son(int x,int y){
29 for(int i=19;i>=0;i--)
30 if (dep[fa[x][i]]>dep[y])x=fa[x][i];
31 return x;
32 }
33 void dfs1(int k,int f,int s){
34 sz[k]=1,mx[k]=0,dep[k]=s,fa[k][0]=f;
35 for(int i=1;i<20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
36 for(int i=head[k];i!=-1;i=edge[i].nex)
37 if (edge[i].to!=f){
38 dfs1(edge[i].to,k,s+1);
39 sz[k]+=sz[edge[i].to];
40 if ((!mx[k])||(sz[mx[k]]<sz[edge[i].to]))mx[k]=edge[i].to;
41 }
42 }
43 void dfs2(int k,int f,int t){
44 dfn[k]=++dfn[0],idfn[dfn[0]]=k,top[k]=t;
45 if (mx[k])dfs2(mx[k],k,t);
46 for(int i=head[k];i!=-1;i=edge[i].nex)
47 if ((edge[i].to!=f)&&(edge[i].to!=mx[k]))dfs2(edge[i].to,k,edge[i].to);
48 }
49 void update(int k,ll x){
50 while (k<=n){
51 f[k]+=x;
52 k+=lowbit(k);
53 }
54 }
55 void update(int x,int y,ll z){
56 update(x,z);
57 if (y<n)update(y+1,-z);
58 }
59 void dfs(int k){
60 if (k)tag[k]++;
61 bool flag=0;
62 for(int i=0,j=0;i<v[k].size();i=j){
63 int son=get_son(v[k][i],k);
64 ll s=get_sum(son);
65 while ((j<v[k].size())&&(get_son(v[k][j],k)==son))s-=get_sum(v[k][j++]);
66 update(dfn[son],dfn[son]+sz[son]-1,s);
67 for(int t=i;t<j;t++)update(dfn[v[k][t]],dfn[v[k][t]]+sz[v[k][t]]-1,-s);
68 if (son==mx[k])flag=1;
69 else update(dfn[son],dfn[son]+sz[son]-1,-get_sum(son));
70 }
71 if ((!flag)&&(mx[k]))update(dfn[mx[k]],dfn[mx[k]]+sz[mx[k]]-1,get_sum(mx[k]));
72 for(int i=0;i<v[k].size();i++)dfs(v[k][i]);
73 v[k].clear();
74 }
75 ll query(int k){
76 ll ans=0;
77 for(int i=dfn[k];i;i-=lowbit(i))ans+=f[i];
78 ans-=(ll)m*c[k];
79 while (k){
80 ans+=tag[fa[top[k]][0]]*get_sum(top[k]);
81 k=fa[top[k]][0];
82 }
83 return ans;
84 }
85 int main(){
86 scanf("%d",&t);
87 while (t--){
88 scanf("%d%d",&n,&q);
89 E=m=dfn[0]=0;
90 memset(head,-1,sizeof(head));
91 memset(tag,0,sizeof(tag));
92 memset(f,0,sizeof(f));
93 for(int i=1;i<n;i++){
94 scanf("%d%d",&x,&y);
95 add(x,y),add(y,x);
96 }
97 dfs1(1,0,1),dfs2(1,0,1);
98 dfn[0]=mx[0]=1,sz[0]=n;
99 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
100 for(int i=1;i<=n;i++)sum[i]=sum[i-1]+c[idfn[i]];
101 for(int i=1;i<=q;i++){
102 scanf("%d%d",&p,&x);
103 if (p==1){
104 m++;
105 for(int j=1;j<=x;j++){
106 scanf("%d",&y);
107 update(dfn[y],dfn[y],c[y]);
108 a[j]=make_pair(dfn[y],dfn[y]+sz[y]-1);
109 }
110 sort(a+1,a+x+1);
111 st[0]=0;
112 for(int j=1;j<=x;j++){
113 while ((st[0])&&(a[st[st[0]]].se<a[j].se))st[0]--;
114 v[idfn[a[st[st[0]]].fi]].push_back(idfn[a[j].fi]);
115 st[++st[0]]=j;
116 }
117 dfs(0);
118 }
119 if (p==2)printf("%lld\n",query(x));
120 }
121 }
122 return 0;
123 }

[hdu7076]ZYB's kingdom的更多相关文章

  1. 线段树 - ZYB's Premutation

    ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ...

  2. Constructing Roads In JGShining's Kingdom(HDU1025)(LCS序列的变行)

    Constructing Roads In JGShining's Kingdom  HDU1025 题目主要理解要用LCS进行求解! 并且一般的求法会超时!!要用二分!!! 最后蛋疼的是输出格式的注 ...

  3. 拓扑排序 --- hdu 4948 : Kingdom

    Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  4. codeforces 613D:Kingdom and its Cities

    Description Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. Ho ...

  5. Bestcoder round #65 && hdu 5593 ZYB's Tree 树形dp

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  6. Bestcoder round #65 && hdu 5592 ZYB's Premutation 线段树

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...

  7. HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

随机推荐

  1. Server Tools(服务器工具)

    服务器工具 1.发布 # Process: MXD 转 Web 地图 arcpy.MXDToWebMap_server("", "", "" ...

  2. Go语言核心36讲(Go语言进阶技术三)--学习笔记

    09 | 字典的操作和约束 至今为止,我们讲过的集合类的高级数据类型都属于针对单一元素的容器. 它们或用连续存储,或用互存指针的方式收纳元素,这里的每个元素都代表了一个从属某一类型的独立值. 我们今天 ...

  3. css单位px,em,rem区别

    在css中单位长度用的最多的是px.em.rem,这三个的区别是: px是固定的像素,一旦设置了就无法因为适应页面大小而改变. em和rem相对于px更具有灵活性,他们是相对长度单位,意思是长度不是定 ...

  4. 【UE4 设计模式】状态模式 State Pattern

    概述 描述 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类. 其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 有限状态机(FSMs) ...

  5. Alpha项目展示

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 Alpha-项目展示 我们是谁 删库跑路对不队 我们在做什么 题士 进度如何 进度总览 一.项目与团队亮点 ...

  6. BUAA-OO-最后单元总结

    BUAA-OO-最后单元总结 经过一学期的魔鬼"折磨"后,OO课程终于要结束了!总体来说我对于作业的总体完成情况还是比较满意的,希望最后可以取得一个理想成绩. 一.第四单元架构设计 ...

  7. STM32的I2C框图详解及通讯过程

    STM32 的I2C 特性及架构 如果我们直接控制STM32 的两个GPIO 引脚,分别用作SCL 及SDA,按照上述信号的时序要求,直接像控制LED 灯那样控制引脚的输出(若是接收数据时则读取SDA ...

  8. 计算机网络传输层之TCP流量控制

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105531547 学习课程:<2019王道考研计算机网络> 学习目的 ...

  9. 网络原理数据链路层之差错控制(检错编码和纠错编码)->(奇偶校验码、CRC循环冗余码、海明码)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/104864783 学习课程:<2019王道考研计算机网络> 学习目的 ...

  10. 整数转化 牛客网 程序员面试金典 C++ Python

    整数转化 牛客网 程序员面试金典 C++ Python 题目描述 编写一个函数,确定需要改变几个位,才能将整数A转变成整数B. 给定两个整数int A,int B.请返回需要改变的数位个数. 测试样例 ...