「AGC020D」 Min Max Repetition

传送门

首先这个东西的连续字符个数你可以二分。但事实上没有必要,这是可以直接算出来的。

即 \(k=\max\{\lceil\frac{A}{B+1}\rceil,\lceil\frac{B}{A+1}\rceil\}\)。

证明你就考虑把每一个 B 或者 A 分成一段过后另一种最少每段放几个。

然后接下来就非常神奇,由于要求字典序最小,这个字符串一定形如 \(\texttt{AAA...BAAA...BAAA...BBB...ABBB...A}\)

然后可以二分两种类型分割的边界,然后暴力check能不能填的上就完事了。

当然这里存在方法可以通过分类讨论来做到不需二分。

/*---Author:HenryHuang---*/
/*---Never Settle---*/
#include<bits/stdc++.h>
using namespace std;
int a,b,c,d,k;
bool check(int mid){
int u=a-mid/(k+1)*k-mid%(k+1);
int v=b-mid/(k+1);
return 1ll*v<=1ll*u*k;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int T;cin>>T;
while(T--){
cin>>a>>b>>c>>d;
k=max(ceil(1.0*a/(b+1)),ceil(1.0*b/(a+1)));
int l=0,r=a+b+1;
while(l<r){
int mid=(l+r)>>1;
if(check(mid)) l=mid+1;
else r=mid;
}
int u=a-l/(k+1)*k-l%(k+1);
int v=b-l/(k+1);
r=l+v-u*k+1;
for(int i=c;i<=min(d,l);++i){
if(i%(k+1)) cout<<"A";
else cout<<"B";
}
for(int i=max(c,l+1);i<=d;++i){
if((i-r)%(k+1)) cout<<"B";
else cout<<"A";
}
cout<<'\n';
}
return 0;
}

「AGC020D」 Min Max Repetition的更多相关文章

  1. 「AGC034D」 Manhattan Max Matching

    「AGC034D」 Manhattan Max Matching 传送门 不知道这个结论啊... (其实就是菜嘛) 首先 \(O(n^2)\) 的建边显然不太行. 曼哈顿距离有这样一个性质,如果将绝对 ...

  2. 【Atcoder】AGC 020 D - Min Max Repetition 二分+构造

    [题意]定义f(A,B)为一个字符串,满足: 1.长度为A+B,含有A个‘A',B个'B'. 2.最长的相同字符子串最短. 3.在满足以上2条的情况下,字典序最小. 例如, f(2,3) = BABA ...

  3. 「笔记」$Min\_25$筛

    总之我也不知道这个奇怪的名字是怎么来的. \(Min\_25\)筛用来计算一类积性函数前缀和. 如果一个积性函数\(F(x)\)在质数单点是一个可以快速计算的关于此质数的多项式. 那么可以用\(Min ...

  4. AtCoder Grand Contest 020 D - Min Max Repetition

    q<=1000个询问,每次问a,b,c,d:f(a,b)表示含a个A,b个B的字符串中,连续A或连续B最小的串中,字典序最小的一个串,输出这个串的c到d位.a,b<=5e8,d-c+1&l ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. 「NOI2013」小 Q 的修炼 解题报告

    「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...

  7. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  8. LOJ #2116 Luogu P3241「HNOI2015」开店

    好久没写数据结构了 来补一发 果然写的时候思路极其混乱.... LOJ #2116 Luogu P3241 题意 $ Q$次询问,求树上点的颜色在$ [L,R]$中的所有点到询问点的距离 强制在线 询 ...

  9. 「ZJOI2016」解题报告

    「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n ...

随机推荐

  1. SQL 语句大全(简化版)

    1. SELECT * FROM 表名 WHERE 1 AND [ORDER BY DESC LIMIT] 2. INSERT INTO 表名 (字段列表) VALUES (值列表) 3. UPDAT ...

  2. 如何使用 IoC

    创建Maven工程,pom.xml添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project x ...

  3. java 常见OPTS参数的含义

    1. -XX:MaxPermSize=256m -XX:MaxPermSize=128M JVM最大允许分配的非堆内存,按需分配 2. java.awt.headless Headless模式是系统的 ...

  4. 太方便了!利用Python对批量Pdf转Word

    在wps或者office里面可以将pdf转word,不过只能免费转前面5页,超过5页就需要会员.今天教大家一个Python办公小技巧:批量Pdf转Word ,这样可以自由想转多少页都可以. 思路:这里 ...

  5. 简化可视SLAM应用程序的开发

    简化可视SLAM应用程序的开发 Easing the development of visual SLAM applications 同步定位和映射(SLAM)描述了一个设备(如机器人)使用传感器数据 ...

  6. 视频处理器为电池供电的设计提供4K视频编码

    视频处理器为电池供电的设计提供4K视频编码 Video processor enables 4K video coding for battery-powered designs OmniVision ...

  7. Python“九九乘法表”

    用Python语言编程,使用双重循环语句输出"九九乘法表". for i in range(1, 10): # 控制行 for j in range(1, i+1): # 控制列 ...

  8. postman之将获取响应数据-创建环境变量,用于不同的接口调用

    应用场景: token的获取,用于不同接口的取值 在test中进行如下设置: var jd = pm.response.json(); var access_token = jd.access_tok ...

  9. 重新整理 .net core 实践篇—————路由和终结点[二十三]

    前言 简单整理一下路由和终节点. 正文 路由方式主要有两种: 1.路由模板方式 2.RouteAttribute 方式 路由约束: 1.类型约束 2.范围约束 3.正则表达式 4.是否必选 5.自定义 ...

  10. 【NX二次开发】缝合片体例子UF_MODL_create_sew

    缝合片体,没有成功缝合的片体涂绿色. 效果:  源码: extern DllExport void ufusr(char *param, int *returnCode, int rlen) { UF ...