ZOJ 1141:Closest Common Ancestors(LCA)
Closest Common Ancestors
Time Limit: 10 Seconds Memory Limit: 32768 KB
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
The data set starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
......
where vertices are represented as integers from 1 to n. The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:

the program input and output is:
Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1,5) (1,4) (4,2)
(2,3)
(1,3) (4,3)
Output
2:1
5:5
题意
给出一颗树, n 次查询最近公共祖先,输出所有查询所涉及到顶点的次数,未涉及则不输出。
思路
LCA模板,在输入查询的时候,用scanf(" (%d,%d)",&x,&y);输入,注意"("左边有一个空格
不知道为什么在POJ过不了,又是TLE又是MLE又是RE的,UVA,ZOJ,CSU都能过
代码
#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=3e3+10;
const int maxq=1e6+10;
using namespace std;
struct Edge
{
int to,Next;
}edge[maxm<<1];
int head1[maxm];
int tot1;
int ans[maxm];
void add_edge(int u,int v)
{
edge[tot1].to=v;
edge[tot1].Next=head1[u];
head1[u]=tot1++;
}
struct Query
{
int to,Next;
int index;
}query[maxq];
int head2[maxm];
int tot2;
void add_query(int u,int v,int index)
{
query[tot2].to=v;
query[tot2].Next=head2[u];
query[tot2].index=index;
head2[u]=tot2++;
}
int f[maxm];
int find(int x)
{
if(f[x]!=x)
f[x]=find(f[x]);
return f[x];
}
void join(int x,int y)
{
int dx=f[x],dy=f[y];
if(dx!=dy)
f[dy]=dx;
}
bool vis[maxm];
int fa[maxm];
int num[maxm];
void LCA(int u)
{
fa[u]=u;
vis[u]=1;
for(register int i=head1[u];~i;i=edge[i].Next)
{
int v=edge[i].to;
if(vis[v])
continue;
LCA(v);
join(u,v);
fa[find(u)]=u;
}
for(register int i=head2[u];~i;i=query[i].Next)
{
int v=query[i].to;
if(vis[v])
ans[query[i].index]=fa[find(v)];
}
}
bool isroot[maxm];
inline void init(int n)
{
tot1=0;tot2=0;
ms(head1,-1);ms(head2,-1);
ms(vis,0);ms(isroot,true);
ms(num,0);
for(register int i=1;i<=n;i++)
f[i]=i;
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
int n;
int cnt,h,p;
while(scanf("%d",&n)==1)
{
init(n);
for(register int i=1;i<=n;i++)
{
scanf("%d:(%d)",&h,&cnt);
for(int j=0;j<cnt;j++)
scanf("%d",&p),add_edge(p,h),add_edge(h,p),isroot[p]=false;
}
int root;
for(register int i=1;i<=n;i++)
if(isroot[i])
root=i;
int q;
scanf("%d",&q);
int x,y;
for(register int i=0;i<q;i++)
{
scanf(" (%d,%d)",&x,&y);
add_query(x,y,i);add_query(y,x,i);
}
LCA(root);
for(register int i=0;i<q;i++)
num[ans[i]]++;
for(register int i=1;i<=n;i++)
if(num[i])
printf("%d:%d\n",i,num[i]);
}
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
ZOJ 1141:Closest Common Ancestors(LCA)的更多相关文章
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- ZOJ 1141 Closest Common Ancestors(LCA)
注意:poj上的数据与zoj不同,第二处输入没有逗号 ' , ' 题意:输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 思路:直接求,两个节点一直往上爬,知道爬到同一个节点, ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- 最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换
[简介] LCA(T,u,v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u.v的祖先. RMQ(A,i,j):对于线性序列A中,询问区间[i,j]上的最值.见我的博客---RMQ - ...
- poj1330Nearest Common Ancestors 1470 Closest Common Ancestors(LCA算法)
LCA思想:http://www.cnblogs.com/hujunzheng/p/3945885.html 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
随机推荐
- URLDNS分析
学习了很久的Java基础,也看了很多的Java反序列化分析,现在也来分析学习哈最基础的URLDNS反序列化吧. Java反序列化基础 为了方便数据的存储,于是乎有了现在的Java序列化于反序列化.序列 ...
- 谈一谈 DDD
一.前言 最近 10 年的互联网发展,从电子商务到移动互联,再到"互联网+"与传统行业的互联网转型,是一个非常痛苦的转型过程.在这个过程中,一方面会给我们带来诸多的挑战,另一方面又 ...
- jsp页面中HTML注释与jsp注释的区别
jsp页面中HTML注释与jsp注释的区别 HTML注释 html注释是 : HTML注释:参与编译,会生成到源码中. 所以,不能使用html注释EL表达式和JSTL标签库 jsp注释 jsp注释是 ...
- android studio Please configure Android SDK / please select Android SDK
有可能是sdk文件损坏造成的. file->settings->appearance&behavior->system settings->android sdk-&g ...
- 学习java 7.17
学习内容: 计算机网络 网络编程 网络编程三要素 IP地址 端口 协议 两类IP地址 IP常用命令: ipconfig 查看本机IP地址 ping IP地址 检查网络是否连通 特殊IP地址: 127. ...
- 面试一定会问到的-js事件循环
这篇文章讲讲浏览器的事件循环(nodejs中的事件循环稍有不同),事件循环是js的核心之一,因为js是单线程,所以异步事件实现就是依赖于事件循环机制,理解事件循环可让我们更清晰的处理js异步事件和应对 ...
- 案例 高级定时器和通用定时器产生pwm的区别 gd32和stm32
- Shell学习(五)—— awk命令详解
一.awk简介 awk是一个非常好用的数据处理工具,相对于sed常常作用于一整个行的处理,awk则比较倾向于一行当中分成数个[字段]处理,因此,awk相当适合处理小型的数据数据处理.awk是一种报 ...
- OpenStack之十: 安装dashboard
官网地址 https://docs.openstack.org/horizon/stein/install/install-rdo.html #:安装包 [root@cobbler ~]# yum i ...
- lambda表达式快速创建
Java 8十个lambda表达式案例 1. 实现Runnable线程案例 使用() -> {} 替代匿名类: //Before Java 8: new Thread(new Runnable( ...