ZOJ 1141:Closest Common Ancestors(LCA)
Closest Common Ancestors
Time Limit: 10 Seconds Memory Limit: 32768 KB
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
The data set starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
......
where vertices are represented as integers from 1 to n. The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:

the program input and output is:
Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1,5) (1,4) (4,2)
(2,3)
(1,3) (4,3)
Output
2:1
5:5
题意
给出一颗树, n 次查询最近公共祖先,输出所有查询所涉及到顶点的次数,未涉及则不输出。
思路
LCA模板,在输入查询的时候,用scanf(" (%d,%d)",&x,&y);输入,注意"("左边有一个空格
不知道为什么在POJ过不了,又是TLE又是MLE又是RE的,UVA,ZOJ,CSU都能过
代码
#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=3e3+10;
const int maxq=1e6+10;
using namespace std;
struct Edge
{
int to,Next;
}edge[maxm<<1];
int head1[maxm];
int tot1;
int ans[maxm];
void add_edge(int u,int v)
{
edge[tot1].to=v;
edge[tot1].Next=head1[u];
head1[u]=tot1++;
}
struct Query
{
int to,Next;
int index;
}query[maxq];
int head2[maxm];
int tot2;
void add_query(int u,int v,int index)
{
query[tot2].to=v;
query[tot2].Next=head2[u];
query[tot2].index=index;
head2[u]=tot2++;
}
int f[maxm];
int find(int x)
{
if(f[x]!=x)
f[x]=find(f[x]);
return f[x];
}
void join(int x,int y)
{
int dx=f[x],dy=f[y];
if(dx!=dy)
f[dy]=dx;
}
bool vis[maxm];
int fa[maxm];
int num[maxm];
void LCA(int u)
{
fa[u]=u;
vis[u]=1;
for(register int i=head1[u];~i;i=edge[i].Next)
{
int v=edge[i].to;
if(vis[v])
continue;
LCA(v);
join(u,v);
fa[find(u)]=u;
}
for(register int i=head2[u];~i;i=query[i].Next)
{
int v=query[i].to;
if(vis[v])
ans[query[i].index]=fa[find(v)];
}
}
bool isroot[maxm];
inline void init(int n)
{
tot1=0;tot2=0;
ms(head1,-1);ms(head2,-1);
ms(vis,0);ms(isroot,true);
ms(num,0);
for(register int i=1;i<=n;i++)
f[i]=i;
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
int n;
int cnt,h,p;
while(scanf("%d",&n)==1)
{
init(n);
for(register int i=1;i<=n;i++)
{
scanf("%d:(%d)",&h,&cnt);
for(int j=0;j<cnt;j++)
scanf("%d",&p),add_edge(p,h),add_edge(h,p),isroot[p]=false;
}
int root;
for(register int i=1;i<=n;i++)
if(isroot[i])
root=i;
int q;
scanf("%d",&q);
int x,y;
for(register int i=0;i<q;i++)
{
scanf(" (%d,%d)",&x,&y);
add_query(x,y,i);add_query(y,x,i);
}
LCA(root);
for(register int i=0;i<q;i++)
num[ans[i]]++;
for(register int i=1;i<=n;i++)
if(num[i])
printf("%d:%d\n",i,num[i]);
}
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
ZOJ 1141:Closest Common Ancestors(LCA)的更多相关文章
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- ZOJ 1141 Closest Common Ancestors(LCA)
注意:poj上的数据与zoj不同,第二处输入没有逗号 ' , ' 题意:输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 思路:直接求,两个节点一直往上爬,知道爬到同一个节点, ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- 最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换
[简介] LCA(T,u,v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u.v的祖先. RMQ(A,i,j):对于线性序列A中,询问区间[i,j]上的最值.见我的博客---RMQ - ...
- poj1330Nearest Common Ancestors 1470 Closest Common Ancestors(LCA算法)
LCA思想:http://www.cnblogs.com/hujunzheng/p/3945885.html 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
随机推荐
- 谈一谈 DDD
一.前言 最近 10 年的互联网发展,从电子商务到移动互联,再到"互联网+"与传统行业的互联网转型,是一个非常痛苦的转型过程.在这个过程中,一方面会给我们带来诸多的挑战,另一方面又 ...
- Spark基础:(五)Spark编程进阶
共享变量 (1)累加器:是用来对信息进行聚合的,同时也是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执 ...
- 零基础学习java------day16-----文件,递归,IO流(字节流读写数据)
1.File 1.1 构造方法(只是创建已经存在文件的对象,并不能创建没有的文件) (1)public File(String pathname) (2)public File(String pare ...
- APK 反编译以及遇到的问题
APK反编译: https://www.cnblogs.com/geeksongs/p/10864200.html 遇到的问题 https://www.jianshu.com/p/55bf5f688e ...
- mybatis-plus解析
mybatis-plus当用lambda时bean属性不要以is/get/set开头,解析根据字段而不是get/set方法映射
- linux安装redis报错
问题:You need tcl 8.5 or newer in order to run the Redis test 解决办法: wget http://downloads.sourceforge. ...
- I/O流之文件流
1.文件操作类 File 1.public File(String pathname)//给定一个要操作文件的完整路径 2.public File(File parent,String child)/ ...
- 『与善仁』Appium基础 — 20、Appium元素定位
目录 1.by_id定位 2.by_name定位 3.by_class_name定位 4.by_xpath定位 5.by_accessibility_id定位 6.by_android_uiautom ...
- 2、Redis的安装
一.Windows下Redis安装 下载地址 Redis中文网站 Github地址 1.将下载下来的文件解压到目录 2.双击redis-server.exe运行 出现如下界面证明运行成功 3.双击 ...
- 模板方法模式(Template Method Pattern)——复杂流程步骤的设计
模式概述 在现实生活中,很多事情都包含几个实现步骤,例如请客吃饭,无论吃什么,一般都包含点单.吃东西.买单等几个步骤,通常情况下这几个步骤的次序是:点单 --> 吃东西 --> 买单. 在 ...