Abelian Period

Accepts: 288
Submissions: 984
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 262144/131072 K (Java/Others)
问题描述
设SSS是一个数字串,定义函数occ(S,x)occ(S,x)occ(S,x)表示SSS中数字xxx的出现次数。

例如:S=(1,2,2,1,3),occ(S,1)=2,occ(S,2)=2,occ(S,3)=1S=(1,2,2,1,3),occ(S,1)=2,occ(S,2)=2,occ(S,3)=1S=(1,2,2,1,3),occ(S,1)=2,occ(S,2)=2,occ(S,3)=1。

如果对于任意的iii,都有occ(u,i)=occ(w,i)occ(u,i)=occ(w,i)occ(u,i)=occ(w,i),那么我们认为数字串uuu和www匹配。

例如:(1,2,2,1,3)≈(1,3,2,1,2)(1,2,2,1,3)\approx(1,3,2,1,2)(1,2,2,1,3)≈(1,3,2,1,2)。

对于一个数字串SSS和一个正整数kkk,如果SSS可以分成若干个长度为kkk的连续子串,且这些子串两两匹配,那么我们称kkk是串SSS的一个完全阿贝尔周期。

给定一个数字串SSS,请找出它所有的完全阿贝尔周期。
输入描述
输入的第一行包含一个正整数T(1≤T≤10)T(1\leq T\leq10)T(1≤T≤10),表示测试数据的组数。

对于每组数据,第一行包含一个正整数n(n≤100000)n(n\leq 100000)n(n≤100000),表示数字串的长度。

第二行包含nnn个正整数S1,S2,S3,...,Sn(1≤Si≤n)S_1,S_2,S_3,...,S_n(1\leq S_i\leq n)S​1​​,S​2​​,S​3​​,...,S​n​​(1≤S​i​​≤n),表示这个数字串。
输出描述
对于每组数据,输出一行若干个整数,从小到大输出所有合法的kkk。
输入样例
2
6
5 4 4 4 5 4
8
6 5 6 5 6 5 5 6
输出样例
3 6
2 4 8

思路:枚举n的因子,然后我们去检验这个是否符合就可以了;

  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<set>
7 #include<math.h>
8 #include<map>
9 using namespace std;
10 typedef long long LL;
11 int ans[100005];
12 int cnt[100005];
13 int cnt2[100005];
14 int tx[100005];
15 int ask[100005];
16 int main(void)
17 {
18 int T;
19 scanf("%d",&T);
20 while(T--)
21 {
22 int n;
23 scanf("%d",&n);
24 int i,j;
25 for(i = 1; i <= n; i++)
26 {
27 scanf("%d",&ans[i]);
28 }
29 int cn = 0;
30 for(i = 1; i <= sqrt(1.0*n); i++)
31 {
32 int v = 0;
33 if(n%i==0)
34 {
35 int k = n/i;
36 for(j = 1; j <= i; j++)
37 {
38 if(!cnt[ans[j]])
39 {
40 tx[v++] = ans[j];
41 }
42 cnt[ans[j]]++;
43 }
44 bool flag = false ;
45 int x = i+1;
46 while(true)
47 {
48 for(j = x; j <= i+x-1&& j<=n; j++)
49 {
50 if(!cnt[ans[j]])
51 {
52 flag = true;
53 break;
54 }
55 cnt2[ans[j]]++;
56 }
57 x = j;
58 for(j = 0; j < v; j++)
59 {
60 if(cnt[tx[j]]!=cnt2[tx[j]])
61 {
62 flag = true;
63 }
64 cnt2[tx[j]] = 0;
65 }
66 if(flag || x == n+1)
67 {
68 break;
69 }
70 }
71 for(j = 0; j < v; j++)
72 {
73 cnt[tx[j]] = 0;
74 }
75 if(!flag)ask[cn++] = i;
76 if(i!=n/i)
77 {
78 v = 0;
79 for(j = 1; j <= k; j++)
80 {
81 if(!cnt[ans[j]])
82 {
83 tx[v++] = ans[j];
84 }
85 cnt[ans[j]]++;
86 }
87 bool flag = false ;
88 int x = k+1;
89 while(true)
90 {
91 for(j = x; j <= k+x-1&& j<=n; j++)
92 {
93 if(!cnt[ans[j]])
94 {
95 flag = true;
96 break;
97 }
98 cnt2[ans[j]]++;
99 }
100 x = j;
101 for(j = 0; j < v; j++)
102 {
103 if(cnt[tx[j]]!=cnt2[tx[j]])
104 {
105 flag = true;
106 }
107 cnt2[tx[j]] = 0;
108 }
109 if(flag || x == n+1)
110 {
111 break;
112 }
113 }
114 for(j = 0; j < v; j++)
115 {
116 cnt[tx[j]] = 0;
117 }
118 if(!flag)ask[cn++] = k;
119 }
120 }
121 }
122 ask[cn++] = n;
123 sort(ask,ask+cn);
124 printf("%d",ask[0]);
125 for(i = 1; i < cn; i++)
126 {
127 printf(" %d",ask[i]);
128 }
129 printf("\n");
130 }
131 return 0;
132 }
												

Abelian Period的更多相关文章

  1. HDU 5908 Abelian Period(暴力+想法题)

    传送门 Description Let S be a number string, and occ(S,x) means the times that number x occurs in S. i. ...

  2. HDU 5908 Abelian Period (BestCoder Round #88 模拟+暴力)

    HDU 5908 Abelian Period (BestCoder Round #88 模拟+暴力) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=59 ...

  3. HDU 5908 Abelian Period 暴力

    Abelian Period 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5908 Description Let S be a number st ...

  4. HDU5908 Abelian Period 暴力

    题目大意:将一个数组分成长度为k的几个连续区间,如果每个区间内各个元素出现的次数相同,则称k为一个阿贝尔周期,从小到大打印所有阿贝尔周期,数据间加空格. 题目思路:map+暴力 #include< ...

  5. HDU 5908 Abelian Period 可以直接用multiset

    http://acm.hdu.edu.cn/showproblem.php?pid=5908 要求把数组分成k组使得每组中的元素出现次数相同 就是分成k个集合,那么直接用multiset判定就可以 有 ...

  6. 【29.27%】【hdu 5908】Abelian Period

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/131072 K (Java/Others) 问题描述 设SS是一个数字串,定义 ...

  7. BestCoder #88(1001 1002)

    Find Q Accepts: 392 Submissions: 780 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/131 ...

  8. TCP Provider The semaphore timeout period has expired

    我们一数据库服务器上有个作业最近几天偶尔会遇到下面错误(敏感信息已做处理),主要是报"TCP Provider: The semaphore timeout period has expir ...

  9. SSRS 2008 R2 错误:Timeout expired. The timeout period

    今天遇到了Reporting Services(SQL SERVER 2008 R2)的报表执行异常情况,报表加载数据很长时间都没有响应,最后报"An error occurred with ...

随机推荐

  1. 使用Rainbond实现离线环境软件交付

    一.离线交付的痛点 在传统行业,如政府.能源.军工.公安.工业.交通等行业,为了防止数据泄露和运行安全考虑,一般情况下网络会采取内外网隔离的策略,以防范不必要的风险,毕竟在安全防护方面,网络物理隔离是 ...

  2. JVM2 类加载子系统

    目录 类加载子系统 类加载器子系统 类加载器ClassLoader角色 类加载的过程 案例 加载Loading 连接Linking 初始化Intialization clinit() 类的加载器 虚拟 ...

  3. 对于Linq关键字和await,async异步关键字的扩展使用

    最近在看neuecc大佬写的一些库:https://neuecc.medium.com/,其中对await,async以及linq一些关键字实现了自定义化使用, 使其不需要引用对应命名空间,不需要多线 ...

  4. 淘宝、网易移动端 px 转换 rem 原理,Vue-cli 实现 px 转换 rem

       在过去的一段时间里面一直在使用Vue配合 lib-flexible和px2rem-loader配合做移动端的网页适配.秉着求知的思想,今天决定对他的原理进行分析.目前网上比较主流使用的就是淘宝方 ...

  5. android 跳到应用市场给软件评分

    1 String packetName = this.getPackageName(); 2 Uri uri = Uri.parse("market://details?id=" ...

  6. Linux磁盘与文件系统原理

    这一章主要是原理性的,介绍了Linux文件系统的运作原理.涉及到很多计算机组成和操作系统的原理性知识,这部分知识很多都忘了,在这里复习下.    我们只看本章第1,2节.--------------- ...

  7. spring-cloud-alibaba-dependencies版本问题

    org.springframework.cloud的spring-cloud-alibaba-dependencies管理的nacos最新版本是0.9.0.RELEASE,已经不再维护了,用起来有版本 ...

  8. Map集合的认识和理解

    java.util.Map(k,v)集合* Map的特点:* 1.Map集合是一个双列集合,一个元素包含两个值(一个是key,一个是Value)* 2.Map集合中的元素,key和value的类型可以 ...

  9. testng 执行多个suite

    我们知道testng的配置文件,一个.xml里面只能有一个suite,那么如果想要设置多个suite怎么弄呢?这个时候我们需要用到testng的标签<suite-files>. 下面说一下 ...

  10. 记ByteCTF中的Node题

    记ByteCTF中的Node题 我总觉得字节是跟Node过不去了,初赛和决赛都整了个Node题目,当然PHP.Java都是必不可少的,只是我觉得Node类型的比较少见,所以感觉挺新鲜的. Nothin ...