题意:

     给一个n*n的01矩阵,然后有两种操作(m次)C x1 y1 x2 y2是把这个小矩形内所有数字异或一遍,Q x y 是询问当前这个点的值是多少?n<=1000 m<=50000.

思路:

     做的有点蛋疼,昨天自己用了将近5个小时自己研究了两个二维线段树的算法,都失败了,其实我想到的第二个算法和网上那个差不多(后来看网上的思路才发现),但是我考虑的是段更新的PushDown的问题,其实这个题目是段更新,*点询问*,根据这个可以简化问题,思路很容易想到可以是线段树的线段树,就是线段树跑X确定区间后再线段树去更新y,但是有几点需要注意

1. 可以不用Pushup,Pushdown(因为是点询问,一开始我就考虑段询问,各种自己设想,研究而且还写了个上下左右更新,就是把线段映射成平面,最后悲剧了..你懂的)

2.*当更新大矩形的时候那么他里面的小矩形也相当于更新了,就是假如现在更新

(1,1)(5,5)(1,5),(5,1)这个矩形的时候我们是找到位置直接就return了,其实(1,1)(2,2),(1,2),(2,1)也更新了,但是我们没有继续往下走,所以当我们寻找答案的时候要一路加过来,这个是重点,这么说可能不懂,但是可以看几遍代码,我当时看了下代码马上就懂了,可能是我昨天想的要比正解难很多,想到头疼,而且思路相近,所以一看就懂了,但是不管是谁,只要考虑过,应该很容易懂,很可惜下面的代码的思路并不是我自己想出来的。


#include<stdio.h>
#include<string.h> #define xlson xl ,xmid ,xt << 1
#define xrson xmid+1 ,xr ,xt << 1 | 1
#define ylson yl ,ymid ,yt << 1
#define yrson ymid+1 ,yr ,yt << 1 | 1
#define N 1005 int cnt[N<<2][N<<2] ,n ,ans;
void UpdateY(int yl ,int yr ,int yt ,int c ,int d ,int xt)
{
if(c <= yl && d >= yr)
{
cnt[xt][yt] ++;
return ;
}
int ymid = (yl + yr) >> 1;
if(c <= ymid) UpdateY(ylson ,c ,d ,xt);
if(d > ymid) UpdateY(yrson ,c ,d ,xt);
return ;
} void UpdateX(int xl ,int xr ,int xt ,int a ,int b ,int c ,int d)
{
if(a <= xl && b >= xr)
{
UpdateY(1 ,n ,1 ,c ,d ,xt);
return ;
}
int xmid = (xl + xr) >> 1;
if(a <= xmid) UpdateX(xlson ,a ,b ,c ,d);
if(b > xmid) UpdateX(xrson ,a ,b ,c ,d);
return ;
} void QueryY(int yl ,int yr ,int yt ,int b ,int xt)
{
ans += cnt[xt][yt];
if(yl == yr) return ;
int ymid = (yl + yr) >> 1;
if(b <= ymid) QueryY(ylson ,b ,xt);
else QueryY(yrson ,b ,xt);
return ; } void QueryX(int xl ,int xr ,int xt ,int a ,int b)
{
QueryY(1 ,n ,1 ,b ,xt);
if(xl == xr) return ;
int xmid = (xl + xr) >> 1;
if(a <= xmid) QueryX(xlson ,a ,b);
else QueryX(xrson ,a ,b);
return ;
} int main ()
{
int t ,m ,i ,x1 ,y1 ,x2 ,y2;
char str[5];
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&n ,&m);
memset(cnt ,0 ,sizeof(cnt));
while(m--)
{
scanf("%s" ,str);
if(str[0] == 'C')
{
scanf("%d %d %d %d" ,&x1 ,&y1 ,&x2 ,&y2);
UpdateX(1 ,n ,1 ,x1 ,x2 ,y1 ,y2);
}
else
{
scanf("%d %d" ,&x1 ,&y1);
ans = 0;
QueryX(1 ,n ,1 ,x1 ,y1);
if(ans % 2)
printf("1\n");
else printf("0\n");
}
}
if(t) printf("\n");
}
return 0;
}

POJ2155二维线段树的更多相关文章

  1. POJ2155 Matrix 【二维线段树】

    题目链接 POJ2155 题解 二维线段树水题,蒟蒻本想拿来养生一下 数据结构真的是有毒啊,, TM这题卡常 动态开点线段树会TLE[也不知道为什么] 直接开个二维数组反倒能过 #include< ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. POJ2155 Matrix 二维线段树

    关键词:线段树 二维线段树维护一个 维护一个X线段的线段树,每个X节点维护一个 维护一个Y线段的线段树. 注意,以下代码没有PushDownX.因为如果要这么做,PushDownX时,由于当前X节点的 ...

  4. 二维线段树 poj-2155

    题意:t组样例 ,输入 n,m,表示n*n的矩阵进行m次操作 ,C: 输入两个坐标 ,组成的矩形 进行取反操作 ,Q:对输的坐标位置输入其值. 思路:一开始想的是用1000(表示x轴)个线段树(对每段 ...

  5. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  6. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  7. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  8. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  9. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

随机推荐

  1. python学习总结篇(2)——函数

    如其他语言一样,除了基本知识外,另外一个重要的板块就是函数了,python中也有函数. 在python中,函数的定义方式为: def   函数名( ): 下面通过几个简单的例子,看看python中的函 ...

  2. Java基础:运算符

    算数运算符:+,-,*,/,%,++,-- 赋值运算符:= 关系运算符:>,<,>=,<=,==,!=,instanceof 逻辑运算符:&&,||,! 位运算 ...

  3. mysql数据库的数据备份,以及开启日志

    导出数据: location代表需要保存的数据文件的位置,默认保存在 C:\ProgramData\MySQL\MySQL Server 5.7\Data(Windows10系统位置,其他系统位置自行 ...

  4. python 实现输出一个等腰三角形

    这个问题实际上是一个数学问题,我们主要找出每行的规律就可以根据规律来书写代码 """ 2 代码实现输出一个等腰三角形,实际上就是一个等差数列求各项的一个数学> 问题 ...

  5. Elasticsearch 结构化搜索、keyword、Term查询

    前言 Elasticsearch 中的结构化搜索,即面向数值.日期.时间.布尔等类型数据的搜索,这些数据类型格式精确,通常使用基于词项的term精确匹配或者prefix前缀匹配.本文还将新版本的&qu ...

  6. pip软件包管理工具介绍及基本使用

    pip软件包管理工具介绍及基本使用 一分耕耘,一分收获,要收获得好,必须耕耘得好.-- 徐特立 一.pip软件包管理工具介绍: 定义:pip是Python包管理工具 作用:对Python包的查找.下载 ...

  7. time模块&datetime模块

    import time a=time.localtime(time.time()) #将时间戳转换为当前时区的元组 print(a) c=time.gmtime(time.time()) #把时间戳转 ...

  8. Android Studio 如何运行单个activity

    •写在前面 调试界面运行单个 Activity 可节省编译整个项目的时间提高效率: 本着提高效率的角度,特地上网百度相关知识: •解决方法 首先,在 AndroidManifest.xml 文件中,找 ...

  9. 致命错误:Python.h:没有那个文件或目录

    yum search python3 | grep dev sudo yum install python3xxx-devel

  10. Python异步asyncio快速实践模版

    只是参考快速跑起来模版,细节或者封装流畅使用需要详细阅读aiohttp文档 1 import asyncio 2 3 async def foo(): 4 await print('bar') 5 6 ...