[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation
本文结构
- 解决问题
- 主要贡献
- 主要内容
- 参考文献
(1) 解决问题
大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep)。
(2) 主要贡献
Contribution 1. 将许多现有的NRL算法架构总结成一个统一的框架(相似度矩阵构造以及降维),并且得出一个结论,如果更高阶的相似度信息被考虑进相似度矩阵,那么NRL算法的表征效果会提高。
Contribution 2. 提出了NEU增强策略来提高现有的NRL算法的表征效果,经由NEU算法处理过的表征矩阵R在理论上融入了节点的更高阶相似度(近似)。最后,在多标签分类和链路预测实验上证明了算法不仅在时间上是有效的,而且在精度上也是有很大提升的。
(3) 主要内容
1. 预备知识
- K阶相似度: 一阶相似度可以表示为两节点的边权,二阶相似度可以表示为两节点的公共邻居数,那么推广到更高阶的相似度呢?首先考虑二阶相似度的另一种解释:节点vi走两步到达节点vj的概率。将一阶二阶相似度简单推广到k阶相似度,即节点vi走k步到达节点vj的概率。 假设A为归一化后的邻接矩阵(一阶相似度转移概率矩阵),那么k阶相似度转移概率矩阵为Ak(k阶相似度转移矩阵),Akij表示节点vi走k步到达节点vj的概率。
(个人理解: 高阶相似度为什么会起作用?由于现实中的网络往往都是稀疏的,这意味着边的规模和节点的规模往往是一样的。因此,真实网络的一阶相似度矩阵通常是非常稀疏的,仅凭一阶相似度已不足以反应节点间的关系。因此,需要结合更高阶的节点相似度)
2. 统一框架
论文提出了一个基于相似度矩阵的降维(矩阵分解)的统一框架,并将现有算法归结到该框架中。
基于相似度矩阵的降维(矩阵分解)统一框架包含两个步骤:
- Step 1:相似度矩阵M的构造。(如邻接矩阵,拉普拉斯矩阵,k阶相似度矩阵等)
- Step 2:相似度矩阵的降维,即矩阵分解,如特征值分解或SVD分解。
目标: 分解矩阵 M=RCT,即寻找矩阵R和矩阵C来似矩阵M,矩阵M和矩阵RCT的离可以用差的矩阵范数来表。其中,R为中心向量表征矩,C为上下文向量表征矩阵。
举例说明算法符合上述统一框架:
Example 1:Spectral Clustering(SC)
相似度矩阵M:归一化后的拉普拉斯矩阵(一阶相似度)
降维方法:特征值分解。
Example 2:Graph Factorization (GF)
相似度矩阵M:归一化后的邻接矩阵(一阶相似度)降维方法:SCD分解。
Example 3:DeepWalk
相似度矩阵M:

DeepWalk算法以基于随机游走生成的采样来近似高阶相似度,而没有实际上去精确计算k阶相似度矩阵。
降维方法:以目标函数优化的方式,SkipGram的目标优化(SGD),寻找矩阵R和矩阵C使得RCT近似M。
Example 4:GraRep
算法原理:
GraRep精确计算1,...k阶,k个相似度矩阵,并且为每个相似度矩阵计算一个特定的表 征(利用SVD分解),最后将这k个表征连接起来。
本质上也是基于相似度矩阵分解,属于提出的统一框架但是,GraRep不能有效适用于大规模网络,计算效率太低。
3. 算法原理
根据以上算法存在的问题:本论文研究如何从近似高阶相似度矩阵中有效的学习网络表征(使得算法既有效率又有效果)。
假设我们已经用上述NRL框架中的某个算法学习了相对比较低阶的相似度矩阵f(A)的近似RCT。在这个基础之上,我们的目标是去学习一个更好的R'和C',其R'C'T近似一个更高阶的矩阵g(A),其度比f(A)更高。
f(A)的定义(相似度矩阵):表示由A的1...k次幂组成的多项式。f(A)的度k表示多项式中考虑到的最大阶的相似度,即A的最大次幂,参考以上DeepWalk的相似度矩阵,f(A)=M。
注意到NEU算法主要是为了增强其他表示学习模型得到的嵌入结果,即在含有低阶信息的嵌入向量的基础上,融合更高阶的信息生成质量更好的嵌入向量。该算法原理很简单,即对其他算法得到的表示向量嵌入矩阵做一个后处理操作,其迭代更新公式如下:

一个疑问:这个R和C的迭代更新是怎么考虑进了更高阶的相似度的?
Theorem:
给定网络表征矩阵R和向下文向量表征矩阵C(可由其他表征算法学习而得),假设RCT近似相似度矩阵M=f(A),近似误差限

且f(A)的度为K。经由上述迭代公式(3)更新而得的R’和C’的积R’C’T近似于矩阵

g(A)具有K+2的度,且近似误差限为

由以上定理可以得出结论: 即每迭代更新一次,分解的近似相似度矩阵的度提升2,但是相应的误差上限会提升2.25倍,因此必须权衡融入的高阶节点相似度信息以及相应的误差。
一个变种的迭代公式:

可以推得变种迭代更新公式在一次迭代中可以获得更高阶的相似度(第一个迭代公式一次迭代只是多了2阶)。(当然比变种迭代公式更复杂的在一次迭代中获得更高阶的相似度的迭代公式可以类似推广)
总结:说了那么多就是对其他表示学习算法得到的嵌入矩阵进行以上迭代更新,即可在嵌入向量中融入更高阶的信息。
(4) 参考文献
Yang C , Sun M , Liu Z , et al. Fast Network Embedding Enhancement via High Order Proximity Approximation[C]// International Joint Conference on Artificial Intelligence. AAAI Press, 2017.
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati的更多相关文章
- NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)
NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...
- [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering
[论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- [论文阅读笔记] Structural Deep Network Embedding
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
随机推荐
- 《逆向工程核心原理》——DLL注入与卸载
利用CreateRemoteThread #include <iostream> #include <tchar.h> #include <Windows.h> # ...
- HarmonyOS三方件开发指南(14)-Glide组件功能介绍
<HarmonyOS三方件开发指南>系列文章合集 引言 在实际应用开发中,会用到大量图片处理,如:网络图片.本地图片.应用资源.二进制流.Uri对象等,虽然官方提供了PixelMap进行图 ...
- Webpack 5 配置手册(从0开始)
针对新手入门搭建项目,Webpack5 配置手册(从0开始) webpack安装顺序 1. `npm init -y`,初始化包管理文件 package.json 2. 新建src源代码目录 3. 新 ...
- 【RTOS】堆栈与任务栈
目录 前言 概念 双堆栈指针 要点 Cortex-M3寄存器介绍 寄存器图 简要介绍 知识 出入栈 入栈(压栈) 出栈 重点知识 异常的响应序列* 入栈 取向量 更新寄存器 小结知识* FreeRTO ...
- Codecept实现前端自动化测试
前言 CodeceptJS是一款UI测试自动框架,它结合了很多市面常见的UI测试自动化框架,封装了大量的API,使得我们编写自动化脚本非常方便,而且相关文档也非常齐全.Codecept.js官网htt ...
- 第27 章 : Kubernetes 安全之访问控制
Kubernetes 安全之访问控制 本文将主要分享以下三方面的内容: Kubernetes API 请求访问控制 Kubernetes 认证 Kubernetes RBAC Security Con ...
- A. 【例题1】奶牛晒衣服
A . [ 例 题 1 ] 奶 牛 晒 衣 服 A. [例题1]奶牛晒衣服 A.[例题1]奶牛晒衣服 关于很水的题解 既然是最少时间,那么就是由最湿的衣服来决定的.那么考虑烘干机对最湿的衣服进行操作 ...
- OAuth2.0理解和用法
现在网络的资料到处都是,很容易搜索到自己想要的答案.但答案通常只能解决自己一部分的问题.如果自己想要有一套自己的解决方案,还得重新撸一遍靠谱. 我需要学下OAuth2.0吗? 没看之前以为OAuth2 ...
- 刚转行1年测试新手:学习Python编程经验实战分享
一.开头说两句 作为一名零基础转行刚一年的测试新手来说,深知自己在技术经验方面落后太多,难免会有急于求成的心态,这也就导致自己在学习新知识时似懂非懂,刚开始学完那会还胸有成竹,一段时间之后却又忘的一干 ...
- 【OO课下讨论】bug中的“二八定律”
bug中的"二八定律" 本文主要为讨论2020/3/17下午OO课讨论的第三个思考题设立 有一个经典的经验性原则,叫帕累托原则,也称为二八定律.这个原则在经济.社会和科技等多个领域 ...