准备数据

2016年北京PM2.5数据集

数据源说明:美国驻华使馆的空气质量检测数据

数据清洗

1. 导入包

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
from datetime import datetime

2. 导入数据

用Pandas库的read_csv()导入csv文件

# 导入2016年北京PM2.5数据集
df = pd.read_csv("Beijing_2016_HourlyPM25_created20170201.csv")
df.head()

3. 删除对数据分析没有用的列

用Pandas库的drop()删除行或列,axis=0 表示行,axis=1 表示列。

df.drop(["Unit","Duration","QC Name"], axis = 1, inplace=True)
df.head()

4. 查看数据的简要信息

用Pandas库的describe()来查看数据的简要信息,包括了计数,平均值,标准差,最小值,最大值等。

df.describe()

5. 删除指定的数据

通过数据的简要信息发现PM2.5的值存在负数,而PM2.5的值不能为负数。

我们来查看一下PM2.5的值为负数的数量。

count = 0
print('PM2.5的值为负数的数量:')
for i in range(df.shape[0]):
if(df.at[i,'Value']<0):
count = count + 1
print(count)



PM2.5的值为负数的数据有45条,而整个数据集的数据有8000多条,删除这45条数据对数据分析没有影响,那怎么删除这45条没用的数据呢?

我们要把PM2.5的值为负数的数据变成空值(NaN),再用Pandas库的dropna()删除空值。

# 把负数的值变成空值(NaN)
df.loc[df.Value<0,'Value']=np.nan
# 删除有空值的数据
df.dropna(inplace=True)
# 此时已经没有负数的PM2.5值了
df.describe()

6. 查看是否有空值

用Pandas库的isnull()来查看是否有空值,value_counts()用来统计个数。

df.isnull().value_counts()

7. 查看是否有重复行

用Pandas库的duplicated()来查看是否有重复行。

df.duplicated()

8. 保存数据清洗后的文件

用Pandas库的to_csv()保存csv文件。

df.to_csv('Beijing_2016_PM25.csv',encoding='utf-8')

画图

1. 导入数据清洗后的文件,统计北京2016年12个月PM2.5的平均值

我们用条形图来表示:

PM25 = pd.read_csv("Beijing_2016_PM25.csv")
month_avg = PM25.groupby(['Month'])['Value'].mean()
PM25_month = pd.DataFrame({'PM2.5平均值':month_avg}, index = np.arange(1,13))
PM25_month.plot(kind='bar',title='北京2016年12个月PM2.5的平均值')
plt.xticks(rotation=360)
plt.show()

2. 绘制某一天的PM2.5折线图

在我们使用Date时发现,Date格式并非datetime格式,而是object格式。

PM25.Date.head()



所以我们要把Date的格式转为datetime。

PM25['Date'] = pd.to_datetime(PM25['Date'])
PM25['Date'].head()



转为datetime格式后,再把Date列设置为列索引。

PM25 = PM25.set_index('Date')
PM25.index



上面的处理完后,就正式进入绘图阶段了。

plt.rcParams['figure.figsize'] = (10.0, 6.0) # 设置画布尺寸
s=pd.Series(PM25['2016-12-10'].Value)#查看2016-12-10的记录
s.plot(kind='line',label='2016-12-10')
plt.legend(loc='upper left') # loc:图例位置参数
plt.xticks(s.index,range(0,24))
plt.xlabel('时间(小时)')
plt.ylabel('PM2.5值')
plt.grid()
plt.show()

Python | Pandas数据清洗与画图的更多相关文章

  1. [数据可视化之一]Pandas单变量画图

    Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...

  2. Python pandas快速入门

    Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...

  3. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

  4. Python Pandas操作Excel

    Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...

  5. python & pandas链接mysql数据库

    Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.con ...

  6. Python pandas ERROR 2006 (HY000): MySQL server has gone away

    之前在做python pandas大数据分析的时候,在将分析后的数据存入mysql的时候报ERROR 2006 (HY000): MySQL server has gone away 原因分析:在对百 ...

  7. Python+Pandas 读取Oracle数据库

    Python+Pandas 读取Oracle数据库 import pandas as pd from sqlalchemy import create_engine import cx_Oracle ...

  8. 使用python中的matplotlib 画图,show后关闭窗口,继续运行命令

    使用python中的matplotlib 画图,show后关闭窗口,继续运行命令 在用python中的matplotlib 画图时,show()函数总是要放在最后,且它阻止命令继续往下运行,直到1.0 ...

  9. 看到篇博文,用python pandas改写了下

    看到篇博文,https://blog.csdn.net/young2415/article/details/82795688 需求是需要统计部门礼品数量,自己简单绘制了个表格,如下: 大意是,每个部门 ...

随机推荐

  1. golang io操作之写篇

    /** * @author livalon * @data 2018/9/4 15:11 */ package main import ( "os" "fmt" ...

  2. 文本编辑工具 Vim与压缩打包

    vim一共有3种模式:一般模式.编辑模式和命令模式 一般模式下的移动光标 光标向左移动:h或者向左的方向键 光标向右移动:l或者向右的方向键光标向上移动:k或者向上的方向键光标向下移动:j或者向下的方 ...

  3. salesforce零基础学习(一百零二)Limitation篇之 CPU Limit

    本篇参考: https://help.salesforce.com/articleView?id=000339361&type=1&mode=1 https://developer.s ...

  4. 力扣 - 208. 实现Trie(前缀树)

    目录 题目 思路 代码 复杂度分析 题目 208. 实现 Trie (前缀树) 思路 在我们生活中很多地方都用到了前缀树:自动补全,模糊匹配,九宫格打字预测等等... 虽然说用哈希表也可以实现:是否出 ...

  5. python3使用kivy生成安卓程序

    技术背景 虽然现在苹果占据了很大一部分的市场,但是从销量数据来看,安卓还是占据了人口的高地.这里我们介绍一个用python的kivy+buildozer来进行安卓APP开发的简单教程,从整个过程中来看 ...

  6. [状压DP]炮兵阵地

    炮 兵 阵 地 炮兵阵地 炮兵阵地 题目描述 司令部的将军们打算在 N ∗ M N*M N∗M的网格地图上部署他们的炮兵部队.一个 N ∗ M N*M N∗M的地图由 N N N行 M M M列组成, ...

  7. 免费开源的客服系统 Linux 服务器环境安装部署过程

    最近因为项目需要,要找一款在线客服系统集成在 APP 中使用,而且涉及到生意开单,客服系统必须稳定可靠.另外甲方要求,必须支持 Linux 服务器环境. 我们以 Ubuntu 18.04 为例把安装部 ...

  8. 可读性友好的JavaScript:两个专家的故事

    每个人都想成为专家,但什么才是专家呢?这些年来,我见过两种被称为"专家"的人.专家一是指对语言中的每一个工具都了如指掌的人,而且无论是否有帮助,都一定要用好每一点.专家二也知道每一 ...

  9. Go-15-flag.String 获取系统参数

    场景: 启动应用程序时,需要传入系统参数.例如:./start --b /notebook --p true --n 8 package main import ( "fmt" f ...

  10. JAVAEE_Servlet_04_在service()方法中连接数据库获取表信息

    在service()方法中连接数据库获取表信息 代码: package com.shige.controller; import javax.servlet.*; import java.io.IOE ...