CF1156F Card Bag
题意简述:有 \(n\) 张卡牌,每张卡牌有数字 \(a_1,a_2,\cdots,a_n\)。现在随机抽取卡牌,不放回,设本次抽到的卡牌为 \(x\),上次抽到的卡牌为 \(y\),若 \(x=y\) 则游戏胜利;若 \(x<y\) 则输掉游戏;若 \(x>y\) 则游戏继续。求获胜概率。
\(a_i\leq n\leq 5\times 10^3\)。
下文认为 \(a_i\) 与 \(n\) 同阶。
不难发现我们只关心卡牌上的数字,所以开个桶维护每个数出现了几次。又因为只能从小往大抽,即无后效性,所以考虑 DP。
设 \(f_{i,j}\) 为 共抽了 \(j\) 次,每个数最多抽到一次,最后一次抽到数字 \(i\) 的概率。
首先考虑如何转移:我们设数字 \(i\) 共有 \(sz_i\) 个,那么不难列出转移方程
\]
,表示 在 \([1,i-1]\) 中抽了 \(j-1\) 个数 的概率乘上 抽到数字 \(i\) 的概率。这样转移的时间复杂度为 \(\mathcal{O}(n^3)\),无法接受。
如果设 \(s_{i,j}\) 为 在 \(i\) 中抽了 \(j\) 个数 的概率,则有
\]
,则转移方程可变形为
\]
。预处理逆元做到时间复杂度 \(\mathcal{O}(n^2)\),可以接受。
这实际上就是具有实际意义的前缀和优化。
最后使用滚动数组可以将空间优化到 \(\mathcal{O}(n)\)。
需要注意初始值 \(f_{0,0}=1\)。
const int N=5e3+5;
ll n,ans,sz[N],f[2][N],s[2][N];
int main(){
init(),cin>>n,s[0][0]=s[1][0]=1;
for(int i=1,a;i<=n;i++)cin>>a,sz[a]++;
for(int i=1,p=1;i<=n;i++,p^=1){
for(int j=1;j<=i;j++){
f[p][j]=s[p^1][j-1]*sz[i]%mod*iv[n-j+1]%mod;
ans=(ans+s[p^1][j-1]*sz[i]*(sz[i]-1)%mod*iv[n-j+1]%mod*iv[n-j])%mod;
s[p][j]=(s[p^1][j]+f[p][j])%mod;
}
} cout<<ans<<endl;
return 0;
}
CF1156F Card Bag的更多相关文章
- Codeforces 1156F Card Bag(概率DP)
设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- DP 做题记录 II.
里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...
- Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...
- HDOJ 4336 Card Collector
容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU 4336:Card Collector(容斥原理)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...
- Card Collector(HDU 4336)
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- F1西班牙大奖赛-加泰罗尼亚赛道地图及简介
背景 银石双赛结束,第二轮三连赛的最后一场将转战西班牙,第50届F1西班牙大奖赛将于本周末(正赛2020-08-15)在加泰罗尼亚赛道上演. 作为近年来F1承办季前测试的赛道,所有人都对这里再熟悉不过 ...
- Abp VNext分表分库,拒绝手动,我们要happy coding
Abp VNext 分表分库 ShardingCore ShardingCore 易用.简单.高性能.普适性,是一款扩展针对efcore生态下的分表分库的扩展解决方案,支持efcore2+的所有版本, ...
- 封装ARX给.Net调用
1:创建工程名.def的文件,内容如下: 2:def文件位置: 3:属性页配置: 4:acrxEntryPoint.cpp下面添加如下代码(可以传参数) 5:c#调用 怕自己忘记,记录一下.
- Java RMI学习与解读(一)
Java RMI学习与解读(一) 写在前面 本文记录在心情美丽的一个晚上. 嗯.就是心情很美丽. 那为什么晚上还要学习呢? emm... 卷... 卷起来. 全文基本都是根据su18师傅和其他师傅的文 ...
- 2021.8.4考试总结[NOIP模拟30]
T1 毛衣衬 将合法子集分为两个和相等的集合. 暴力枚举每个元素是否被选,放在哪种集合,复杂度$O(3^n)$.考虑$\textit{meet in the middle}$. 将全集等分分为两部分分 ...
- USB_ID OTG
谁知道USB_ID pin 脚的功能意义?是干什么用的?USB 中不就有 VDD,GND,USB+,USB- 并没有USB_ID 的信息呀?检测ID脚状态高低,从而判断为主设备或从设备,otg的时候用 ...
- python numpy版本报错: File "*\numpy\__init__.py", line 305, in <module> _win_os_check()
具体代码如下所示: from numpy import * import operator a = random.rand(4, 4) print(a) 具体报错内容如下所示: Traceback ( ...
- 树行DP小结
顾名思义:就是在树上做的DP,依据DFS的性质,在访问过儿子之后返回后将儿子的状态传递给父亲... 先看例题: 此题用贪心也能过,不过正解是DP. 对于树上的DP我们可以直接考虑最优解下各点的状态来方 ...
- shell 脚本二进制安装mysql
以下脚本的手动安装连接:https://www.cnblogs.com/leihongnu/p/12581793.html [ #/bin/bash#脚本安装 mysql,上传安装包至 /rootcd ...
- ICMP 协议仿真及ping命令用途
1.实验目的 加深对 IPv4 协议首部各定义域的理解,掌握路由表的结构和基本配置命令,熟悉 ICMP 的调试操作. 2.实验原理 IPv4 协议定义,网络层协议的相关 RFC 定义和描述. 3.实验 ...