CF1156F Card Bag
题意简述:有 \(n\) 张卡牌,每张卡牌有数字 \(a_1,a_2,\cdots,a_n\)。现在随机抽取卡牌,不放回,设本次抽到的卡牌为 \(x\),上次抽到的卡牌为 \(y\),若 \(x=y\) 则游戏胜利;若 \(x<y\) 则输掉游戏;若 \(x>y\) 则游戏继续。求获胜概率。
\(a_i\leq n\leq 5\times 10^3\)。
下文认为 \(a_i\) 与 \(n\) 同阶。
不难发现我们只关心卡牌上的数字,所以开个桶维护每个数出现了几次。又因为只能从小往大抽,即无后效性,所以考虑 DP。
设 \(f_{i,j}\) 为 共抽了 \(j\) 次,每个数最多抽到一次,最后一次抽到数字 \(i\) 的概率。
首先考虑如何转移:我们设数字 \(i\) 共有 \(sz_i\) 个,那么不难列出转移方程
\]
,表示 在 \([1,i-1]\) 中抽了 \(j-1\) 个数 的概率乘上 抽到数字 \(i\) 的概率。这样转移的时间复杂度为 \(\mathcal{O}(n^3)\),无法接受。
如果设 \(s_{i,j}\) 为 在 \(i\) 中抽了 \(j\) 个数 的概率,则有
\]
,则转移方程可变形为
\]
。预处理逆元做到时间复杂度 \(\mathcal{O}(n^2)\),可以接受。
这实际上就是具有实际意义的前缀和优化。
最后使用滚动数组可以将空间优化到 \(\mathcal{O}(n)\)。
需要注意初始值 \(f_{0,0}=1\)。
const int N=5e3+5;
ll n,ans,sz[N],f[2][N],s[2][N];
int main(){
init(),cin>>n,s[0][0]=s[1][0]=1;
for(int i=1,a;i<=n;i++)cin>>a,sz[a]++;
for(int i=1,p=1;i<=n;i++,p^=1){
for(int j=1;j<=i;j++){
f[p][j]=s[p^1][j-1]*sz[i]%mod*iv[n-j+1]%mod;
ans=(ans+s[p^1][j-1]*sz[i]*(sz[i]-1)%mod*iv[n-j+1]%mod*iv[n-j])%mod;
s[p][j]=(s[p^1][j]+f[p][j])%mod;
}
} cout<<ans<<endl;
return 0;
}
CF1156F Card Bag的更多相关文章
- Codeforces 1156F Card Bag(概率DP)
设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- DP 做题记录 II.
里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...
- Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...
- HDOJ 4336 Card Collector
容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU 4336:Card Collector(容斥原理)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...
- Card Collector(HDU 4336)
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- noj加1乘2平方
广度优先搜索典例 00 题目 描述: 最简单的队列的使用#include <iostream>#include <queue>using namespace std;queue ...
- 分布式表示(Distributed Representation)
NLP模型笔记 - 分布式表示 ziuno 2020-03-08 19:52:50 410 收藏 2 分类专栏: NLP 模型 笔记 文章标签: nlp 最后发布:2020-03-08 19:52:5 ...
- Alpha阶段发布声明
发布声明 Alpha 1.Alpha版本功能说明 功能列表和详情图 模块 功能 展示 首页 查看首页博文,搜索博文,可供未登录用户使用 动态 查看推荐动态给未登录用户使用,登录用户可以查看关注动态.我 ...
- OO_JAVA_表达式求导
OO_JAVA_表达式求导_第一弹 ---------------------------------------------------表达式提取部分 词法分析 首先,每一个表达式内部都存在不可 ...
- elasticsearch的bulk(批量)操作
在es中我们可能会有这么一种需求,即有时需要批量向es中插入或更新或删除数据,如果一条一条数据的操作,那么速度必然很慢,那么es的bulk api就可以派上用场. delete 删除操作,只需要写一个 ...
- python redis自带门神 lock 方法
redis 支持的数据结构比较丰富,自制一个锁也很方便,所以极少提到其原生锁的方法.但是在单机版redis的使用时,自带锁的使用还是非常方便的.自己有车还打啥滴滴顺风车是吧,本篇主要介绍redis-p ...
- python3中的bytes和string
原文链接:https://www.cnblogs.com/abclife/p/7445222.html python 3中最重要的新特性可能就是将文本(text)和二进制数据做了更清晰的区分.文本总是 ...
- mybatis竟然报"Invalid value for getInt()"
目录 背景 场景 初探 再探 结局 背景 使用mybatis遇到一个非常奇葩的问题,错误如下: Cause: org.apache.ibatis.executor.result.ResultMapEx ...
- Nessus home版插件更新
1,进入服务器停止服务 service nessusd stop 2,进入目录执行命令获取Challenge code cd /opt/nessus/sbin/ ./nessuscli fetch - ...
- Python正则表达式使用小记
最近做Python课实验发现正则表达式和它在py中的的标准库re有很多能多琢磨一下的点,遂决定写成一篇小记,以后想复习能再来看看. 名词 因为不同文献书籍对正则表达式的描述有差别,我在这里列出一下我已 ...