BJ2 斜率限制器

本文介绍斜率限制器取自于 Anastasiou 与 Chan (1997)[1]研究,其所利用的斜率限制器也是 Barth 与 Jespersen 限制器的一种修正形式,并且包含一参数 \(\beta\) 控制限制器耗散性大小,我们这里将其称之为 BJ2 限制器。

限制器修正解形式为

\[u_h(\mathbf{x}_i) = u_c + \Phi (\nabla u)_ c\cdot \mathbf{r}
\]

限制器函数计算公式为

\[\Phi = min(\Phi_j), \quad j=1,2,\cdots,N_p
\]
\[\Phi_j = max\left\{ min(\beta \gamma_j, 1), min(\gamma_j, \beta) \right\}
\]
\[\gamma_j = \left\{ \begin{matrix}
\frac{u_c^{max} - u_c}{u_j - u_c}, & u_j - u_c > 0 \cr
\frac{u_c^{min} - u_c}{u_j - u_c}, & u_j - u_c < 0 \cr
1, & u_i - u_c = 0 \cr
\end{matrix}\right.\]

其中 \(u_c^{max}=max(u_c, u_{neighbour})\),\(u_c^{min}=min(u_c, u_{neighbour})\),\(u_j\) 为未限制前数值解。

在限制器计算过程中引入了系数 \(\beta \in [1,2]\),其作用是控制限制器的耗散性。当 \(\beta=1\) 时,限制器等价于minmod限制器,而 \(\beta=2\) 时为Superbee限制器。


  1. ANASTASIOU K, CHAN C T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes[J]. International Journal for Numerical Methods in Fluids, John Wiley & Sons, Ltd, 1997, 24(11): 1225–1245.

BJ2 斜率限制器的更多相关文章

  1. TVB斜率限制器

    TVB斜率限制器 本文参考源程序来自Fluidity. 简介 TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数 \[\tilde{m}(a_1, a ...

  2. 流量限制器(Flux Limiter)

    内容翻译自Wikipedia Flux limiter 流量限制器(Flux limiters)应用在高精度格式中-这种数值方法用来求解科学与工程问题,特别是由偏微分方程(PDE's)描述的流体动力学 ...

  3. 感谢 git

    今天对程序大修了一下,顺便把所有算例测试了一遍,突然发现二维浅水方程有些算例出现了明显的错误. 这次突然出现的错误让我有点措手不及,因为一直没有修改过浅水方程求解器,所以这些算例很久没有测试过了.硬着 ...

  4. Hermite WENO 重构格式

    Hermite WENO 单元重构 本文主要介绍采用 Hermite WENO 重构方法作为斜率限制器应用于二维或高维单元中. 1.简介[1] ENO格式最早由 Harten 等[2]提出,ENO格式 ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  9. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. [软工顶级理解组] Beta阶段测试报告

    在测试过程中发现了多少Bug? 测试阶段发现并已修复的bug: 尚且存在,但是难以解决或者不影响使用的bug: 计算重修课程的时候,如果重修课程的课程号和原课程号不同,则GPA计算会出现误差.但我们无 ...

  2. Noip模拟72 2021.10.9

    T1 出了个大阴间题 真就以为他出了个大阴间题就没写,打个暴力就跑了 数据范围显然摆明是状压 设$f[sta][0/1]$表示在已经选择的集合$sta$中,$A$的最大值是$A$还是$A+1$ 然后按 ...

  3. Noip模拟20 2021.7.19

    T1 玩具 题目读错意思直接报零... 拼接方式没读懂以为是个数学题,用卡特兰数,可是的确想多了 数据范围表达出你怎么暴力都行,选择$n^3,dp$ 相当于一片森林,每次多加一条边就合并成一棵树 在$ ...

  4. 梦开始的地方(Noip模拟3) 2021.5.24

    T1 景区路线规划(期望dp/记忆化搜索) 一看题目发现肯定是概率期望题,再仔细想想这三天做的题,就知道是个期望dp. 考试思路(错): 因为聪聪与可可的10分打法根深蒂固,导致在考试时想到了用深搜( ...

  5. 【做题记录】 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博 ...

  6. cf 11A Increasing Sequence(水,)

    题意: A sequence a0, a1, ..., at - 1 is called increasing if ai - 1 < ai for each i: 0 < i <  ...

  7. 用python写一个自动化盲注脚本

    前言 当我们进行SQL注入攻击时,当发现无法进行union注入或者报错等注入,那么,就需要考虑盲注了,当我们进行盲注时,需要通过页面的反馈(布尔盲注)或者相应时间(时间盲注),来一个字符一个字符的进行 ...

  8. Centos 8 阿里yum源配置

    编辑 CentOS-AppStream.repo配置文件,注释原有url,加入以下url baseurl=https://mirrors.aliyun.com/centos/$releasever/A ...

  9. Linux使用ssh测试端口

    在windows上可以使用telnet客户端测试,在linux如果不方便安装telnet客户端的时候可以通关ssh来测试端口 具体命令如下 ssh -v -p 8080 root@59.207.252 ...

  10. gitbook的安装

    [前端工具]nodejs+npm+vue 安装 安装 npm install gitbook-cli -g gitbook命令: gitbook init //初始化目录文件 gitbook help ...