[题解] P4556 [Vani有约会]雨天的尾巴
[题解] P4556 [Vani有约会]雨天的尾巴
·题目大意
给定一棵树,有m次修改操作,每次修改 \(( x\) \(y\) \(z )\) 表示 \((x,y)\) 之间的路径上数值 \(z\) 的个数 \(+1\) 。最后求每个节点上数量最多的数是哪个,如果有多个相同的则输出较小的。
·思路分析
想到用线段树合并+树上差分。由于值存储在点上,所以在 \(fa[LCA(x,y)],LCA(x,y)\) 上 \(-1\),在\(x,y\) 上 \(+1\) 即可。
注意线段树在 \(pushup()\) 时要记得更新是哪个数字数量最多。
·代码实现
#include <bits/stdc++.h>
#define reg register
using namespace std;
namespace io{
char ch[20];
template<typename T>inline void read(T &x){
x=0;
char ch,f=0;
while(!isdigit(ch=getchar()))f|=ch=='-';
while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
x=f?-x:x;
}
template<typename T>inline void write(T x){
(x<0)&&(x=-x,putchar('-'));
(x)||(putchar('0'));
reg int i=0;
while(x)ch[i++]=x%10^48,x/=10;
while(i)putchar(ch[--i]);
}
} //快读快写
#define rd io::read
#define wt io::write
using namespace std;
const int maxN=200100;
int son[maxN],dep[maxN],fa[maxN],top[maxN],rt[maxN],head[maxN];
int tot,d[maxN],n,m,ans[maxN],cnt;
stack<int>st;
struct Seg_Tree{
int ch[2],val,id;
}t[maxN<<5];
struct Edge{
int to,next;
}e[maxN<<1];
inline void add(int x,int y){e[++tot]={y,head[x]};head[x]=tot;}
void dfs1(int),dfs2(int,int),solve(int),pup(int),del(int);
int LCA(int,int),merge(int,int,int,int);
void update(int,int,int&,int,int);
int main(){
rd(n);rd(m);
for(reg int i=1;i<n;++i){
int x,y;
rd(x);rd(y);
add(x,y);add(y,x);
}
dfs1(1);memset(top,0,sizeof(top));
dfs2(1,1);
for(reg int i=1;i<=m;++i){
int x,y,z,k;
rd(x);rd(y);rd(z);
k=LCA(x,y);
update(1,100000,rt[fa[k]],z,-1);update(1,100000,rt[k],z,-1);
update(1,100000,rt[x],z,1);update(1,100000,rt[y],z,1);
}
solve(1);
for(reg int i=1;i<=n;++i){
wt(ans[i]);putchar('\n');
}
return 0;
}
void solve(int x){
for(reg int i=head[x];i;i=e[i].next){
int s=e[i].to;
if(s==fa[x])continue;
solve(s);
rt[x]=merge(1,100000,rt[x],rt[s]);
}
ans[x]=t[rt[x]].id;
if(t[rt[x]].val==0)ans[x]=0;
}
int merge(int l,int r,int x,int y){
if(!x||!y)return x+y;
if(l==r){
t[x].val+=t[y].val;
t[x].id=l;
return x;
}
int mid=l+r>>1;
t[x].ch[0]=merge(l,mid,t[x].ch[0],t[y].ch[0]);
t[x].ch[1]=merge(mid+1,r,t[x].ch[1],t[y].ch[1]);
pup(x);del(y);
return x;
}
void del(int x){t[x]={0,0,0};st.push(x);}
void pup(int x){
if(t[t[x].ch[0]].val>=t[t[x].ch[1]].val)t[x].val=t[t[x].ch[0]].val,t[x].id=t[t[x].ch[0]].id;
else t[x].val=t[t[x].ch[1]].val,t[x].id=t[t[x].ch[1]].id;
}
void update(int l,int r,int &k,int x,int v){
if(!k){
if(st.empty())k=++cnt;
else k=st.top(),st.pop();
}
if(l==r){
t[k].val+=v;t[k].id=l;
return;
}
int mid=l+r>>1;
if(x<=mid)update(l,mid,t[k].ch[0],x,v);
else update(mid+1,r,t[k].ch[1],x,v);
pup(k);
}
void dfs1(int x){
dep[x]=dep[fa[x]]+1;top[x]=1;
int mxson=-1;
for(reg int i=head[x];i;i=e[i].next){
int s=e[i].to;
if(dep[s])continue;
fa[s]=x;dfs1(s);top[x]+=top[s];
if(top[s]>mxson)mxson=top[s],son[x]=s;
}
}
void dfs2(int x,int u){
top[x]=u;
if(son[x])dfs2(son[x],u);
for(reg int i=head[x];i;i=e[i].next){
int s=e[i].to;
if(top[s])continue;
dfs2(s,s);
}
}
int LCA(int x,int y){
while(top[x]^top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
x=fa[top[x]];
}
return dep[x]<dep[y]?x:y;
}//树链剖分求LCA
[题解] P4556 [Vani有约会]雨天的尾巴的更多相关文章
- P4556 [Vani有约会]雨天的尾巴 (线段树合并)
P4556 [Vani有约会]雨天的尾巴 题意: 首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋 ...
- 洛谷 P4556 [Vani有约会]雨天的尾巴 解题报告
P4556 [Vani有约会]雨天的尾巴 题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒 ...
- P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)
P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...
- 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)
题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...
- P4556 [Vani有约会]雨天的尾巴
目录 思路 优化 过程中的问题/疑问 错误 代码 思路 每个节点维护一课线段树(当然是动态开点) 线段树的作用是统计这个节点有多少种粮食型号,以及最多的粮食型号 然后树上差分,u和v点 +1,lca( ...
- 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)
传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...
- 洛咕 P4556 [Vani有约会]雨天的尾巴
终于把考试题清完了...又复活了... 树上差分,合并用线段树合并,但是空间会炸. 某大佬:lca和fa[lca]减得时候一定已经存在这个节点了,所以放进vector里,合并完之后减掉就好了... 玄 ...
- P4556 [Vani有约会]雨天的尾巴(线段树合并)
传送门 一道线段树合并 首先不难看出树上差分 我们把每一次修改拆成四个,在\(u,v\)分别放上一个,在\(lca\)和\(fa[lca]\)各减去一个,那么只要统计一下子树里的总数即可 然而问题就在 ...
- P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并 (树上差分+线段树合并)
显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案. 用动态开点的方式建立线段树,注意离散化. 1 #include<bits/st ...
随机推荐
- MySQL中的redo log和undo log
MySQL中的redo log和undo log MySQL日志系统中最重要的日志为重做日志redo log和归档日志bin log,后者为MySQL Server层的日志,前者为InnoDB存储引擎 ...
- Jenkins配置下拉菜单联动效果
在使用Jenkins集成时,经常需要配置一些环境信息,由于测试.线上.预发布需要切换环境和域名,需要在Jenkins中配置下拉菜单联动效果. 首先选择参数化构建过程,然后首先配置环境,环境分为:测试环 ...
- shell的图形排列
目录 一.矩形 二.直角三角形 三.倒直角三角形 四.靠右的直角三角形 五.等腰三角形 六.平行四边形 七.等腰梯形 八.菱形 九.可变动菱形 一.矩形 二.直角三角形 三.倒直角三角形 四.靠右的直 ...
- 攻防世界pwn高手区——pwn1
攻防世界 -- pwn1 攻防世界的一道pwn题,也有一段时间没有做pwn了,找了一道栈题热身,发现还是有些生疏了. 题目流程 拖入IDA中,题目流程如图所示,当v0为1时,存在栈溢出漏洞.在gdb中 ...
- Java面向对象04——构造器
类中的构造器也成为构造方法,是在进行创建对象的时候必须调用的.并且构造器有以下两个特点: 必须和类的名字相同 必须没有返回值,也不能写void package oop.demon01.demon02 ...
- 【Android面试查漏补缺】之事件分发机制详解
前言 查漏补缺,查漏补缺,你不知道哪里漏了,怎么补缺呢?本文属于[Android面试查漏补缺]系列文章第一篇,持续更新中,感兴趣的朋友可以[关注+收藏]哦~ 本系列文章是对自己的前段时间面试经历的总结 ...
- matplotlib.pyplot设置画布主题
import matplotlib.pyplot as plt # 定义一个画图函数 def sinplot(flip = 1): x = np.linspace(0,10,100) for i in ...
- 基于Java和Bytemd用120行代码实现一个桌面版Markdown编辑器
前提 某一天点开掘金的写作界面的时候,发现了内置Markdown编辑器有一个Github的图标,点进去就是一个开源的Markdown编辑器项目bytemd(https://github.com/byt ...
- Docker部署ELK之部署kibana7.6.0(2)
1. 拉取kibana镜像 sudo docker pull kibana:7.6.0 2. 输入命令构建kibana容器,关于挂载kibana配置文件的问题,也可以先构建一个容器,然后把配置文件co ...
- 一次关于shiro反序列化漏洞的思考
0x01前言 之前在我反序列化的那篇文章中(https://www.cnblogs.com/lcxblogs/p/13539535.html),简单说了一下反序列化漏洞,也提了一嘴常见的几种Java框 ...