工具篇:介绍几个好用的guava工具类
前言
平时我们都会封装一些处理缓存或其他的小工具。但每个人都封装一次,重复造轮子,有点费时间。有没有一些好的工具库推荐-guava。guava是谷歌基于java封装好的开源库,它的性能、实用性,比我们自己造的轮子更好,毕竟谷歌出品,下面介绍下几个常用的guava工具类
- LoadingCache(本地缓存)
- Multimap 和 Multiset
- BiMap
- Table(表)
- Sets和Maps(交并差)
- EventBus(事件)
- StopWatch(秒表)
- Files(文件操作)
- RateLimiter(限流器)
- Guava Retry(重试)
关注公众号,一起交流,微信搜一搜: 潜行前行
guava的maven配置引入
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>27.0-jre</version>
</dependency>
LoadingCache
- LoadingCache 在实际场景中有着非常广泛的使用,通常情况下如果遇到需要大量时间计算或者缓存值的场景,就应当将值保存到缓存中。LoadingCache 和 ConcurrentMap 类似,但又不尽相同。最大的不同是 ConcurrentMap 会永久的存储所有的元素值直到他们被显示的移除,但是 LoadingCache 会为了保持内存使用合理会根据配置自动将过期值移除
- 通常情况下,Guava caching 适用于以下场景:
- 花费一些内存来换取速度
- 一些 key 会被不止一次被调用
- 缓存内容有限,不会超过内存空间的值,Guava caches 不会存储内容到文件或者到服务器外部,如果有此类需求考虑使用 Memcached, Redis
- LoadingCache 不能缓存 null key
- CacheBuilder 构造 LoadingCache 参数介绍
CacheBuilder 方法参数 | 描述 |
---|---|
initialCapacity(int initialCapacity) | 缓存池的初始大小 |
concurrencyLevel(int concurrencyLevel) | 设置并发数 |
maximumSize(long maximumSize) | 缓存池大小,在缓存项接近该大小时, Guava开始回收旧的缓存项 |
weakValues() | 设置value的存储引用是虚引用 |
softValues() | 设置value的存储引用是软引用 |
expireAfterWrite(long duration, TimeUnit unit) | 设置时间对象没有被写则对象从内存中删除(在另外的线程里面不定期维护) |
expireAfterAccess(long duration, TimeUnit unit) | 设置时间对象没有被读/写访问则对象从内存中删除(在另外的线程里面不定期维护) |
refreshAfterWrite(long duration, TimeUnit unit) | 和expireAfterWrite类似,不过不立马移除key,而是在下次更新时刷新,这段时间可能会返回旧值 |
removalListener( RemovalListener<? super K1, ? super V1> listener) | 监听器,缓存项被移除时会触发 |
build(CacheLoader<? super K1, V1> loader) | 当数据不存在时,则使用loader加载数据 |
- LoadingCache
V get(K key)
, 获取缓存值,如果键不存在值,将调用CacheLoader的load方法加载新值到该键中 - 示例
LoadingCache<Integer,Long> cacheMap = CacheBuilder.newBuilder().initialCapacity(10)
.concurrencyLevel(10)
.expireAfterAccess(Duration.ofSeconds(10))
.weakValues()
.recordStats()
.removalListener(new RemovalListener<Integer,Long>(){
@Override
public void onRemoval(RemovalNotification<Integer, Long> notification) {
System.out.println(notification.getValue());
}
})
.build(new CacheLoader<Integer,Long>(){
@Override
public Long load(Integer key) throws Exception {
return System.currentTimeMillis();
}
});
cacheMap.get(1);
Multimap 和 MultiSet
- Multimap的特点其实就是可以包含有几个重复Key的value,可以put进入多个不同value但是相同的key,但是又不会覆盖前面的内容
- 示例
//Multimap: key-value key可以重复,value也可重复
Multimap<String, String> multimap = ArrayListMultimap.create();
multimap.put("csc","1");
multimap.put("lwl","1");
multimap.put("csc","1");
multimap.put("lwl","one");
System.out.println(multimap.get("csc"));
System.out.println(multimap.get("lwl"));
---------------------------
[1, 1]
[1, one]
- MultiSet 有一个相对有用的场景,就是跟踪每种对象的数量,所以可以用来进行数量统计
- 示例
//MultiSet: 无序+可重复 count()方法获取单词的次数 增强了可读性+操作简单
Multiset<String> set = HashMultiset.create();
set.add("csc");
set.add("lwl");
set.add("csc");
System.out.println(set.size());
System.out.println(set.count("csc"));
---------------------------
3
2
BiMap
- BiMap的键必须唯一,值也必须唯一,可以实现value和key互转
- 示例
BiMap<Integer,String> biMap = HashBiMap.create();
biMap.put(1,"lwl");
biMap.put(2,"csc");
BiMap<String, Integer> map = biMap.inverse(); // value和key互转
map.forEach((v, k) -> System.out.println(v + "-" + k));
Table
Table<R,C,V> table = HashBasedTable.create();
,由泛型可以看出,table由双主键R(行),C(列)共同决定,V是存储值- 新增数据:
table.put(R,C,V)
- 获取数据:
V v = table.get(R,C)
- 遍历数据:
Set<R> set = table.rowKeySet(); Set<C> set = table.columnKeySet();
- 示例
// 双键的Map Map--> Table-->rowKey+columnKey+value
Table<String, String, Integer> tables = HashBasedTable.create();
tables.put("csc", "lwl", 1);
//row+column对应的value
System.out.println(tables.get("csc","lwl"));
Sets和Maps
// 不可变集合的创建
ImmutableList<String> iList = ImmutableList.of("csc", "lwl");
ImmutableSet<String> iSet = ImmutableSet.of("csc", "lwl");
ImmutableMap<String, String> iMap = ImmutableMap.of("csc", "hello", "lwl", "world");
set的交集, 并集, 差集
HashSet setA = newHashSet(1, 2, 3, 4, 5);
HashSet setB = newHashSet(4, 5, 6, 7, 8);
//并集
SetView union = Sets.union(setA, setB);
//差集 setA-setB
SetView difference = Sets.difference(setA, setB);
//交集
SetView intersection = Sets.intersection(setA, setB);
map的交集,并集,差集
HashMap<String, Integer> mapA = Maps.newHashMap();
mapA.put("a", 1);mapA.put("b", 2);mapA.put("c", 3);
HashMap<String, Integer> mapB = Maps.newHashMap();
mapB.put("b", 20);mapB.put("c", 3);mapB.put("d", 4);
MapDifference<String, Integer> mapDifference = Maps.difference(mapA, mapB);
//mapA 和 mapB 相同的 entry
System.out.println(mapDifference.entriesInCommon());
//mapA 和 mapB key相同的value不同的 entry
System.out.println(mapDifference.entriesDiffering());
//只存在 mapA 的 entry
System.out.println(mapDifference.entriesOnlyOnLeft());
//只存在 mapB 的 entry
System.out.println(mapDifference.entriesOnlyOnRight());;
-------------结果-------------
{c=3}
{b=(2, 20)}
{a=1}
{d=4}
EventBus
- EventBus是Guava的事件处理机制,是设计模式中的观察者模式(生产/消费者编程模型)的优雅实现。对于事件监听和发布订阅模式
- EventBus内部实现原理不复杂,EventBus内部会维护一个Multimap<Class<?>, Subscriber> map,key就代表消息对应的类(不同消息不同类,区分不同的消息)、value是一个Subscriber,Subscriber其实就是对应消息处理者。如果有消息发布就去这个map里面找到这个消息对应的Subscriber去执行
- 使用示例
@Data
@AllArgsConstructor
public class OrderMessage {
String message;
}
//使用 @Subscribe 注解,表明使用dealWithEvent 方法处理 OrderMessage类型对应的消息
//可以注解多个方法,不同的方法 处理不同的对象消息
public class OrderEventListener {
@Subscribe
public void dealWithEvent(OrderMessage event) {
System.out.println("内容:" + event.getMessage());
}
}
-------------------------------------
// new AsyncEventBus(String identifier, Executor executor);
EventBus eventBus = new EventBus("lwl");
eventBus.register(new OrderEventListener());
// 发布消息
eventBus.post(new OrderMessage("csc"));
StopWatch
Stopwatch stopwatch = Stopwatch.createStarted();
for(int i=0; i<100000; i++){
// do some thing
}
long nanos = stopwatch.elapsed(TimeUnit.MILLISECONDS);
System.out.println("逻辑代码运行耗时:"+nanos);
Files文件操作
- 数据写入
File newFile = new File("D:/text.txt");
Files.write("this is a test".getBytes(), newFile);
//再次写入会把之前的内容冲掉
Files.write("csc".getBytes(), newFile);
//追加写
Files.append("lwl", newFile, Charset.defaultCharset());
- 文本数据读取
File newFile = new File("E:/text.txt");
List<String> lines = Files.readLines(newFile, Charset.defaultCharset());
- 其他操作
方法 | 描述 |
---|---|
Files.copy(File from, File to) | 复制文件 |
Files.deleteDirectoryContents(File directory) | 删除文件夹下的内容(包括文件与子文件夹) |
Files.deleteRecursively(File file) | 删除文件或者文件夹 |
Files.move(File from, File to) | 移动文件 |
Files.touch(File file) | 创建或者更新文件的时间戳 |
Files.getFileExtension(String file) | 获得文件的扩展名 |
Files.getNameWithoutExtension(String file) | 获得不带扩展名的文件名 |
Files.map(File file, MapMode mode) | 获取内存映射buffer |
RateLimiter
//RateLimiter 构造方法,每秒限流permitsPerSecond
public static RateLimiter create(double permitsPerSecond)
//每秒限流 permitsPerSecond,warmupPeriod 则是数据初始预热时间,从第一次acquire 或 tryAcquire 执行开时计算
public static RateLimiter create(double permitsPerSecond, Duration warmupPeriod)
//获取一个令牌,阻塞,返回阻塞时间
public double acquire()
//获取 permits 个令牌,阻塞,返回阻塞时间
public double acquire(int permits)
//获取一个令牌,超时返回
public boolean tryAcquire(Duration timeout)
////获取 permits 个令牌,超时返回
public boolean tryAcquire(int permits, Duration timeout)
- 使用示例
RateLimiter limiter = RateLimiter.create(2, 3, TimeUnit.SECONDS);
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
System.out.println("get one permit cost time: " + limiter.acquire(1) + "s");
--------------- 结果 -------------------------
get one permit cost time: 0.0s
get one permit cost time: 1.331672s
get one permit cost time: 0.998392s
get one permit cost time: 0.666014s
get one permit cost time: 0.498514s
get one permit cost time: 0.498918s
get one permit cost time: 0.499151s
get one permit cost time: 0.488548s
- 因为RateLimiter滞后处理的,所以第一次无论取多少都是零秒
- 可以看到前四次的acquire,花了三秒时间去预热数据,在第五次到第八次的acquire耗时趋于平滑
Guava Retry
- maven引入
<dependency>
<groupId>com.github.rholder</groupId>
<artifactId>guava-retrying</artifactId>
<version>2.0.0</version>
</dependency>
- RetryerBuilder 构造方法
RetryerBuilder方法 | 描述 |
---|---|
withRetryListener | 重试监听器 |
withWaitStrategy | 失败后重试间隔时间 |
withStopStrategy | 停止策略 |
withBlockStrategy | 阻塞策略BlockStrategy |
withAttemptTimeLimiter | 执行时间限制策略 |
retryIfException | 发生异常,则重试 |
retryIfRuntimeException | 发生RuntimeException异常,则重试 |
retryIfExceptionOfType(Class<? extends Throwable> ex) | 发生ex异常,则重试 |
retryIfException(Predicate<Throwable> exceptionPredicate) | 对异常判断,是否重试 |
retryIfResult(Predicate<V> resultPredicate) | 对返回结果判断,是否重试 |
Retryer<Boolean> retryer = RetryerBuilder.<Boolean>newBuilder()
.retryIfException()
.retryIfResult(Predicates.equalTo(false))
.withAttemptTimeLimiter(AttemptTimeLimiters.fixedTimeLimit(1, TimeUnit.SECONDS))
.withStopStrategy(StopStrategies.stopAfterAttempt(5))
.build();
//Retryer调用
retryer.call(() -> true);
- spring也有对应的重试机制,相关文章可以看看重试框架Guava-Retry和spring-Retry
欢迎指正文中错误(故事纯属虚构,如有雷同纯属巧合)
参考文章
工具篇:介绍几个好用的guava工具类的更多相关文章
- Tools:downloading and Building EDK II工具篇:安装/使用EDKII源代码获取/编译工具[2.3]
Tools:Installing and using the Required Tools for downloading and Building EDK II工具篇:安装/使用EDKII源代码获取 ...
- 【Java/Android性能优2】Android性能调优工具TraceView介绍
本文参考:http://www.trinea.cn/android/android-traceview/ Android自带的TraceView堪比java的性能调优工具visualvm线程视图,可以 ...
- 【工具篇】利用DBExportDoc V1.0 For MySQL自动生成数据库表结构文档
对于DBA或开发来说,如何规范化你的数据库表结构文档是灰常之重要的一件事情.但是当你的库,你的表排山倒海滴多的时候,你就会很头疼了. 推荐一款工具DBExportDoc V1.0 For MySQL( ...
- 国内首篇介绍JanOS物联网操作系统的文章 - 如何把你的手机主板打造成物联网平台
天地会珠海分舵注:如无意外,您现在正在看的将是国内首篇且是唯一一篇介绍炙手可热的物联网的操作系统JanOS的文章!不信你去百度!希望大家能喜欢.但本文只是引言,更多信息请还是访问JanOS的官网:ht ...
- 大数据工具篇之Hive与MySQL整合完整教程
大数据工具篇之Hive与MySQL整合完整教程 一.引言 Hive元数据存储可以放到RDBMS数据库中,本文以Hive与MySQL数据库的整合为目标,详细说明Hive与MySQL的整合方法. 二.安装 ...
- GC参考手册 —— GC 调优(工具篇)
JVM 在程序执行的过程中, 提供了GC行为的原生数据.那么, 我们就可以利用这些原生数据来生成各种报告.原生数据(raw data) 包括: 各个内存池的当前使用情况, 各个内存池的总容量, 每次G ...
- 介绍一个axios调试好用的工具:axios-mock-adapter
上一篇文章中写到用promise时应注意的问题,这一篇文章继续介绍一个可以和axios库配合的好工具: axios-mock-adapter.axios-mock-adapter可以用来拦截http请 ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
- spring boot 学习(九)小工具篇:?秒防刷新
注解 + 拦截器:?秒防刷新 小工具篇:工具许多都是我以前在 github 之类开源平台找到的小工具类,作者的信息什么的许多都忘了.先说声不好意思了.若有相关信息,麻烦提醒一下~ 解释 所谓的?秒防刷 ...
随机推荐
- k3d入门指南:在Docker中运行K3s
在本文中,我们将简单了解k3d,这是一款可让您在安装了Docker的任何地方运行一次性Kubernetes集群的工具,此外在本文中我们还将探讨在使用k3d中可能会出现的一切问题. 什么是k3d? k3 ...
- JS String总结
String常用总结 1.字符 length属性:表示字符串包含多少16位码元 charAt():方法返回给定索引位置的字符 charCodeAt() :可以查看指定码元的字符编码 String.fr ...
- uboot1: 启动流程和移植框架
目录 0 环境 1 移植框架 3 执行流程 3.0 链接地址 3.1 start.S, 入口 3.2 __main 3.3 board_init_f()和init_sequence_f[] 3.4 r ...
- 【Redis破障之路】四:Jedis基本使用
在前面我们已经学习了Redis命令行客户端redis-cli的使用,接下来我们了解一下Redis基于Java编程语言的客户端. 在Java语言体系下,有三个常用的Redis客户端Jedis.Redis ...
- Git 系列教程(12)- 分支的新建与合并
实际工作场景 可能会遇到的工作流 开发某个网站 为实现某个新的用户需求,创建一个分支 在这个分支上开展新工作 正在此时,你突然接到一个电话说有个很严重的问题需要紧急修补,你将按照如下方式来处理: 切换 ...
- linux基本命令随笔
cd(change directory) 不跟参数,直接进入当前登录用户的家目录 . 代表当前目录 .. 代表上级目录 ls(list) -l 显示文件详细信息 -a 显示隐藏文件 -S 以文件大小排 ...
- tail -n 13 history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}'提取第2到第11列
# cat history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}' # tail -n 13 history 215 systemctl stop 216 ...
- Chm文件阅读软件测试需求
转发: .Chm文件阅读软件测试需求 . xchm问题太多就不考虑了: kchm是问题少一些 windows打开是乱码就不去考虑 必须在windows打开正常的再在龙芯上打开 1windows打开是乱 ...
- 面向对象——python核心编程第二版
类与实例 类与实例相互关联着:类是对象的定义,而实例是"真正的实物",它存放了类中所定义的对象的具体信息. class MyData(object): pass >>& ...
- 026.Python面向对象类的相关操作以及对象和类的删除操作
类的相关操作 定义的类访问共有成员的成员和方法 定义的类动态添加公有成员的属性和方法 定义的类删除公有成员的属性和方法 1 定义一个基本的类 #定义一个类 class Plane(): #添加一个共有 ...