力扣 - 剑指 Offer 10- I. 斐波那契数列
题目
思路1(递归 / 自顶向下)
这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第
n
个位置的值,根据斐波那契数列的定义fib(n) = fib(n-1) + fib(n-2)
,即等于前一个和前前一个两个的值之和但是如果直接递归,会导致很多重复的计算,效率很低,比如
n
为 5 时:fib(5)
为fib(4)
和fib(3)
两个值之和然后
fib(4)
又等于fib(3)
和fib(2)
两个值之和。注意,fib(3)
在上一步已经求过了,这里还要再求一次另一个
fib(3)
即为fib(2)
和fib(1)
两个值之和,同样,fib(2)
,也被求过了……
根据上面例子我们可以发现这样子会导致很多多余的计算,做无用功,也会出现由于
n
的增大导致计算量急剧增大。因此我们可以将这个算法优化一下,就是添加一个表格memory
来记录计算过的值,在每次递归的时候,判断一下之前是否计算过了,如果发现计算过了,直接返回数组中对应的值,否则就计算一下,然后记录到memory
表格里
代码
class Solution {
int[] memory;
public int fib(int n) {
memory = new int[n+1];
return help(n);
}
public int help(int n) {
// 递归结束的条件
if (n <= 1) {
return n;
}
// 判断是否计算过了
if (memory[n] != 0) {
return memory[n];
}
// 没有在 memory 中找到就计算一下,然后在记录到 memory 中
int i = help(n - 1) + help(n - 2);
i %= 1000000007;
memory[n] = i;
return memory[n];
}
}
复杂度分析
- 时间复杂度:\(O(N)\)
- 空间复杂度:\(O(N)\)
思路2(迭代 / 动态规格)
- 同样,根据斐波那契数列定义,可以发现第
n
个的值为前两个值之和,因此我们可以从第一个开始计算,循环计算到n
就得到了结果,空间上仅仅占两个变量的空间,为 \(O(1)\) ,代码如下:
代码
class Solution {
public int fib(int n) {
if (n < 2) {
return n;
}
int a = 1;
int b = 1;
for (int i = 2; i < n; i++) {
int temp = (a + b);
a = b;
b = temp;
b %= 1000000007;
}
return b;
}
}
复杂度分析
- 时间复杂度:\(O(N)\)
- 空间复杂度:\(O(1)\)
力扣 - 剑指 Offer 10- I. 斐波那契数列的更多相关文章
- 剑指offer七之斐波那契数列
一.题目 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39. 二.思路 序号: 0 1 2 3 4 5 ...
- 剑指offer 07:斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).(n<=39) 法一: public class Solution { publi ...
- 【剑指 Offer】10-I.斐波那契数列
题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - ...
- 【剑指Offer】10- I. 斐波那契数列 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:htt ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- 剑指offer-矩形覆盖-斐波那契数列(递归,递推)
class Solution { public: int rectCover(int number) { if(number==0 || number==1||number==2) return nu ...
- 剑指offer——面试题10:斐波那契数列
个人答案: #include"iostream" #include"stdio.h" #include"string.h" using na ...
- 剑指offer第二版面试题10:斐波那契数列(JAVA版)
题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...
- 剑指offer 面试题10:斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 编程思想 知道斐波拉契数列的规律即可. 编程实现 class Solu ...
随机推荐
- Python3 网络通信 网络聊天室 文件传输
Python3 网络通信 网络聊天室 文件传输 功能描述 该项目将实现一个文字和文件传输的客户端和服务器程序通信应用程序.它将传输和接收视频文件. 文本消息必须通过TCP与服务器通信,而客户端自己用U ...
- python 类方法 静态方法
属性: 公有属性 (属于类,每个类一份) 普通属性 (属于对象,每个对象一份) 私有属性 (属于对象,跟普通属性相似,只是不能通过对象直接访问) 方法:(按作用) 构造方法 析构函数 方法: ...
- 初学Python-day8 案例2
中奖率 1 import random 2 num = 123456 3 i = 1 4 while True: 5 win = random.randrange(100000, 999999) 6 ...
- 小白自制Linux开发板 七. USB驱动配置
本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...
- 4.7 80--删除排序数组中的重复项 II
因为python的list可以直接del List[index],因此直接使用了暴力方法,判断是否重复了两次,是的话直接使用del. 在转向使用Java时,因为暴力方法的局限,一直在找怎样对Java的 ...
- (半课内)信安数基 RSA-OAEP 初探
在RSA攻击中,存在着"小明文攻击"的方式: 在明文够小时,密文也够小,直接开e次方即可: 在明文有点小时,如果e也较小,可用pow(m,e)=n*k+c穷举k尝试爆破 所以,比如 ...
- Coursera Deep Learning笔记 结构化机器学习项目 (下)
参考:https://blog.csdn.net/red_stone1/article/details/78600255https://blog.csdn.net/red_stone1/article ...
- [技术博客]Unity3d 动画控制
在制作游戏时,导入的箱子模型本身自带动画.然而,它的动画是一个从打开到关闭的完整过程,并且没有给出控制打开关闭的方法. 最直接的想法是对该动画进行拆分,再封装成不同的动画状态,但是不巧的是,这个动画被 ...
- stm32学习笔记之GPIO功能框图分析
GPIO 是通用输入输出端口的简称,简单来说就是STM32 可控制的引脚,STM32 芯片的GPIO 引脚与外部设备连接起来,从而实现与外部通讯.控制以及数据采集的功能.STM32 芯片的GPIO被分 ...
- Linux调整时区和同步时间
1.调整时区 tzselect 选择Asia -> China -> Beijing Time 2.设置为默认时区 cp -f /usr/share/zoneinfo/Asia/Shang ...