【NOIP 2018】摆渡车
前情提要
是的 我终于回来补坑了
一年了哇 你这个鸽子王
斜率优化版本
今天在复习斜率优化的时候才想起来这个题
定义就不设了 大家想看可以看上面那个原版
怎么斜率优化呢?
我们考虑\(i\)点是当前的目标状态 \(j\)点是当前的最优决策
则有如下这个式子
\(f_i = i\ *\ (cnt_i - cnt_j)\ -\ (sum_i\ -\ sum_j)\ +\ f_j\)
拆
\(f_i = i\ *\ cnt_i\ -\ i\ *\ cnt_j\ -\ sum_i\ +\ sum_j\ +\ f_j\)
根据斜率优化的套路
把和\(j\)有关的放在左边 \(同时和i和j的项放在中间\) \(只和i有关的放在右边\)
\(f_j\ + sum_j\ =\ i\ *\ cnt_j\ +\ f_i\ - \ sum_i\ +\ i\ *\ cnt_i\)
\(f_j + sum_j\)是\(y\)
\(i\)是\(k\)
\(cnt_j\)是\(x\)
\(f_i\ - \ sum_i\ +\ i\ *\ cnt_i\)是\(b\)
接下来就是常规操作了 对于\(i\) 在队列中压入\(i - m\) 维护一个斜率的下凸包即可
代码
#include <cstdio>
#include <algorithm>
const int maxT = 4000105;
int n, m, t, ti, ans = 1e9, l = 1, r, cnt[maxT], sum[maxT], q[maxT], f[maxT];
inline double getSlope(int u, int v) { return (double) (f[v] + sum[v] - f[u] - sum[u]) / (cnt[u] == cnt[v] ? 1e-9 : cnt[v] - cnt[u]); }
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &ti); t = std::max(t, ti);
cnt[ti]++; sum[ti] += ti;
}
for (int i = 1; i < t + m; i++) { cnt[i] += cnt[i - 1]; sum[i] += sum[i - 1]; } // 前缀和.
for (int i = 0; i < t + m; i++) {
if (i - m >= 0) {
while (l < r && getSlope(q[r - 1], q[r]) >= getSlope(q[r], i - m)) { r--; }
q[++r] = i - m; // 把可能成为最优解的推入队列.
}
while (l < r && getSlope(q[l], q[l + 1]) <= i) { l++; } // 把不可能成为最优解的弹出队列.
f[i] = cnt[i] * i - sum[i]; // 特判边界情况.
if (l <= r) { f[i] = std::min(f[i], f[q[l]] + (cnt[i] - cnt[q[l]]) * i - (sum[i] - sum[q[l]])); } // 斜率优化转移.
}
for (int i = t; i < t + m; i++) { ans = std::min(ans, f[i]); }
printf("%d\n", ans);
return 0;
}
【NOIP 2018】摆渡车的更多相关文章
- [OI]Noip 2018总结(普及)
考砸了,还有原谅我代码十分有限的可读性. 一个人的真正伟大之处就在于他能够认识到自己的渺小.——保罗 从一年前初一九月到现在18年10月接触OI已经有一年了.几次模拟赛也自我感觉良好,都过了一等的线, ...
- NOIP 2018 普及组 解题报告
目录 标题统计 题目链接 思路 代码 龙虎斗 题目链接: 思路 代码 摆渡车 题目链接: 思路 对称二叉树 题目链接 思路: 先来解释一下为毛现在才来发解题报告: 其实博主是参加过NOIP 2018普 ...
- noip 2018 D1T3 赛道修建
noip 2018 D1T3 赛道修建 首先考虑二分答案,这时需要的就是对于一个长度求出能在树中选出来的最多的路径条数.考虑到一条路径是由一条向上的路径与一条向下的路径构成,或者仅仅是向上或向下的路径 ...
- NOIP 2018 总结
NOIP 2018 总结 提高组: 应得分 \(100 + 100 + 40 + 100 + 50 + 44 = 434\). 考后期望得分 \(100 + 100 + 20 + 100 + 50 + ...
- noip 2018 d2t1 旅行
noip 2018 d2t1 旅行 (题目来自洛谷) 给定n个城市,m条双向道路的图, 不存在两条连接同一对城市的道路,也不存在一条连接一个城市和它本身的道路.并且, 从任意一个城市出发,通过这些道路 ...
- NOIP 2018 真・退役记
目录 NOIp 2018 真・退役记 7.01 7.05 \(summary\) 7.12 7.18 7.26 - 7.27 8.2 8.3 8.3 8.7 8.9 8.20 8.24 8.27 8. ...
- [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解
啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...
- Before NOIP 2018
目录 总结 刷题 2018 - 9 - 24 2018 - 9 - 25 2018 - 9 - 26 2018 - 9 - 27 2018 - 9 - 28 2018 - 9 - 29 2018 - ...
- My thoughts after NOIP 2018(1)
联赛就这样结束了. 感觉真是奇怪啊.以前看重的东西,像是忽然扔下的包袱,一下子轻了. 而我一直在逃避的,不愿直面的东西,果然终于还是要再次面对了啊. 文化课百废待兴,\(noip\)的最终结果依然未知 ...
随机推荐
- python的函数参数传递方式
python的一切数据类型都是对象.但是python的对象分为不可变对象和可变对象.python的变量是引用,对python变量的赋值是引用去绑定该对象. 可变对象的数据发生改变,例如列表和字典,引用 ...
- Beta_Scrum Meeting_2
会议概要 日期:2021年5月30日 出席人员:除zwh以外的所有人员 会议概述:讨论前两天工作进度以及后两天工作计划 人员分工 组员 负责 前两日完成的工作 后两日即将完成的工作 遇到的困难 hcc ...
- 混合开发框架Flutter
Flutter开发简介与其他的混合开发的对比 为什么要使用Flutter? 跨平台技术简介 Hybrid技术简介 QT简介 Flutter简介 为什么要使用Flutter? Flutter有什么优势? ...
- ruby基本图片上传
图片上传问题 在我们的项目里,需要实现海报的图片上传,便于更好地向外界展示一个社团活动的基本内容,但是在处理中间件相关问题时遇到了一点小小的挫折.不过这并不要紧,OSS对象存储服务固然好,但是本着交完 ...
- Vue 报错Error in render: “TypeError: Cannot read properties of null (reading ‘xxx’)” found in
前端vue报错 [Vue warn]: Error in render: "TypeError: Cannot read properties of null (reading 'name' ...
- FastAPI 学习之路(三十三)操作数据库
通过创建pydantic模型进行验证提交数据 from pydantic import BaseModel class UserBase(BaseModel): email: str class Us ...
- noip模拟11
T1 math 就挺水一小破题目,第一眼看好像不可做,看着看着突然发现假设x和y的最大公约数是gcd,那么kx%y一定是gcd的倍数, 然后想到可以把所有数字与k的gcd求出来,打一个完全背包,可是仔 ...
- Maven还停留在导jar包?快来探索Nexus私服的新世界
写在前面 Maven,学习框架之前我们都会接触到的一个工具,感觉他的定位,似乎就跟git一样,只是方便我们开发?于是自然而然的,很多小猿对于Maven都只是停留在会用的阶段,利用他来构建,打包,引入j ...
- 数组中的逆序对 牛客网 剑指Offer
数组中的逆序对 牛客网 剑指Offer 题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对10000000 ...
- 二叉树中和为某一值的路径 牛客网 程序员面试金典 C++ Python
二叉树中和为某一值的路径 牛客网 程序员面试金典 题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一 ...