传送门

题面里那个式子

考场上我推了半天那个式子代表什么意思,但就是没想到位运算

\(\lfloor \frac{2x}{2x^n} \rfloor \iff x\gg(n-1)\), 即将x的第n位移至最低位

\(2*x\%2^n \iff (x\ll 1)\%2^n\), 即将x左移一位并舍弃n+1及更高位

所以这两个操作等价于将x循环左移一位,最高位补至最低位

显然那一大串异或操作可以搞个前缀和

然后考虑何时取最大值

先说一个错误的思路 我考场上打的暴力就是这么挂的

令\(sum[i]\)为前i次操作的异或和

\(x \in [0, 2^n)\)可以取遍二进制位的所有情况,

所以 \(x \oplus sum[i] \in [0, 2^n)\)

那么x异或上前i个数就等价于没异或,题目就转化为求这i个数异或后缀和的最大值

然后你会在测样例的时候面对着一个执着的3一筹莫展

这个做法错误的原因是没有满足「你的对手会使 x 最后尽量小」

也就是说,你的对手会在你确定x后找到会使一个最小的位置下手

而我们先固定下手位置,再确定x的做法就显然不对了

再说正解:

令\(suf[i]\)为异或后缀和(suf为suffix缩写)

因为异或时各位互不影响的特性,x异或上前i个数等价于循环移位后的x异或上前i个数循环移位后的结果

那么令\(sum[i]\)为前i个数循环移位后的异或前缀和

题面就转化为求一个\(x\)使\(x \oplus sum[i] \oplus suf[i+1]\)最大

就珂以扔到一棵trie树上跑了

p.s. 这题还有一个坑点是求「得到最大值的初值数量」,实际上指的是有多少个不同的x能取到这个最大值,而不是指有多少个位置i能取到最大值. 哦这就是我一调一小时的原因

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n, m;
int a[N], sum[N], suf[N], size;
struct trie{
int son[2], cnt;
#define t(p) tree[p]
}tree[N*25]; void upd(int u) {
int p=0, t, t2;
for (int i=30; i>=0; --i) {
t2 = (u&(1<<i))?1:0;
t = t(p).son[t2];
if (!t) {t(p).son[t2]=++size; t=size;}
p = t;
}
t(p).cnt = 1;
} int query(int dep, int p) {
if (dep<0) return 0;
if (t(p).son[0] && t(p).son[1]) {
int t1=query(dep-1, t(p).son[0]), t2=query(dep-1, t(p).son[1]);
if (t1==t2) t(p).cnt = t(t(p).son[0]).cnt+t(t(p).son[1]).cnt;
else t(p).cnt += t1>t2?t(t(p).son[0]).cnt:t(t(p).son[1]).cnt;
return max(t1, t2);
}
else {
if (t(p).son[0]) {
int t=query(dep-1, t(p).son[0])|((dep<n)?(1<<dep):0);
t(p).cnt += t(t(p).son[0]).cnt;
return t;
}
else {
int t=query(dep-1, t(p).son[1])|((dep<n)?(1<<dep):0);
t(p).cnt += t(t(p).son[1]).cnt;
return t;
}
}
} int query_cnt(int u) {
int p=0;
for (int i=30; i; --i)
p = (u&(1<<i))?t(p).son[1]:t(p).son[0];
//cout<<p<<endl;
return t(p).cnt;
} signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif n=read(); m=read();
for (int i=1; i<=m; ++i) a[i]=read(), sum[i]=sum[i-1]^(((a[i]>>(n-1))+(a[i]<<1))%(1<<n));
//for (int i=1; i<=m; ++i) a[i]=read(), sum[i]=sum[i-1]^((a[i]<<1)%(1<<(n-1)));
for (int i=m; i; --i) suf[i] = suf[i+1]^a[i];
for (int i=0; i<=m; ++i) upd(sum[i]^suf[i+1]); //, cout<<"upd "<<(sum[i]^suf[i+1])<<endl;
int t=query(30, 0);
printf("%d\n%d\n", t, t(0).cnt); return 0;
}

题解 big的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. WPF教程八:如何更好的使用Application程序集资源

    这一篇单独拿出来分析这个程序集资源,为的就是不想让大家把程序集资源和exe程序强关联,因为程序集资源实际上是二进制资源,后续编译过程中会被嵌入到程序集中,而为了更方便的使用资源,我们要好好梳理一下程序 ...

  2. 【故障公告】redis 服务器宕机引发博客站点故障

    非常抱歉,今天下午 17:10~17:40 左右,由于博客系统所使用的 redis 服务器宕机,造成博客站点无法正常访问,由此给您带来很大的麻烦,请您谅解. 我们会针对这次故障改进 redis 服务器 ...

  3. 2021最新WordPress安装教程(二):安装PHP和MySQL

    这是 2021最新WordPress安装教程系列的第二篇文章,前一篇文章< 2021最新WordPress安装教程(一):Centos7安装Apache>已经完整的介绍了如何在Centos ...

  4. C语言:统计字符个数及种类

    #include <stdio.h> int main(){ char c; //用户输入的字符 int shu=0;//字符总数 int letters=0, // 字母数目 space ...

  5. python正则表达式应用

    import re ab='''ms: [["", "\u7acb\u5373\u4e0b\u8f7d"], ["", "\u52 ...

  6. UI作品评审总结:切忌过度设计,注意设计闭环

    本期,我们一起看看学长认证模块--UI同学的作品评审.   拿好小板凳,做好笔记,我们开始吧!     我们拿了两个典型的作品进行了一个讲解,做的特色都还不错,但是都有些小问题.   先来看一下第一位 ...

  7. awk对某个字段分割处理

    工作中遇到要根据文件中某个字段分割成多行文本的处理,想到用awk处理,这里记录下: 问题: 原文件:假设一共2个字段,用"|"分割,其中第二个字段用"#"分割, ...

  8. OpenFaaS实战之二:函数入门

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. python基础问题

    包安装相关问:如何安装Python三方包?在命令行如何检查一个包是否已安装?答:安装用pip install 卸载用 pip uninstall 直接import 这个包问:环境变量PATH的作用是什 ...

  10. odoo里的rpc用法

    import odoorpcdb_name = 'test-12'user_name = 'admin'password = 'admin'# Prepare the connection to th ...