1.MapReduce概念

1)MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.

2)MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。Reduce阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据【在这先把reduce理解为一个单独的聚合程序即可】。

3)MapReduce框架都有默认实现,用户只需要覆盖map()和reduce()两个函数,即可实现分布式计算,非常简单。

4)两个函数的形参和返回值都是<key、value>,使用的时候一定要注意构造<k,v>。

2.MapReduce核心思想

(1)分布式的运算程序往往需要分成至少2个阶段。

(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

 3. MapReduce 中的shuffle

 4.Mapreduce代码

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WordCount {
//分割任务
// 第一对kv,是决定数据输入的格式
// 第二队kv 是决定数据输出的格式
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
/*map阶段数据是一行一行过来的
每一行数据都需要执行代码*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
LongWritable longWritable = new LongWritable(1);
String s = value.toString();
context.write(new Text(s), longWritable);
}
}
//接收Map端数据
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
/* reduce 聚合程序 每一个k都会调用一次
* 默认是一个节点
* key:每一个单词
* values:map端 当前k所对应的所有的v
*/
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
//设置统计的初始值为0
long sum = 0l;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
} /**
* 是当前mapreduce程序入口
* 用来构建mapreduce程序
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建一个job任务
Job job=Job.getInstance();
//指定job名称
job.setJobName("第一个mr程序");
//构建mr
//指定当前main所在类名(识别具体的类)
job.setJarByClass(WordCount.class);
//指定map端类
// 指定map输出的kv类型
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//指定reduce端类
//指定reduce端输出的kv类型
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); // 指定输入路径
Path in = new Path("/word");
FileInputFormat.addInputPath(job,in);
//输出路径指定
Path out = new Path("/output");
FileSystem fs = FileSystem.get(new Configuration());
//如果文件存在
if(fs.exists(out)){
fs.delete(out,true);
}
//存在
FileOutputFormat.setOutputPath(job,out); //启动
job.waitForCompletion(true);
System.out.println("MapReduce正在执行");
}
}

MapReduce原理深入理解(一)的更多相关文章

  1. MapReduce原理深入理解(二)

    1.Mapreduce操作不需要reduce阶段 1 import org.apache.hadoop.conf.Configuration; 2 import org.apache.hadoop.f ...

  2. 大数据运算模型 MapReduce 原理

    大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...

  3. MapReduce原理及其主要实现平台分析

    原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 ...

  4. MapReduce 原理与 Python 实践

    MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce ...

  5. hadoop自带例子SecondarySort源码分析MapReduce原理

    这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 pac ...

  6. 04 MapReduce原理介绍

    大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由googl ...

  7. Atitit 泛型原理与理解attilax总结

    Atitit 泛型原理与理解attilax总结 1. 泛型历史11.1.1. 由来11.2. 为什么需要泛型,类型安全21.3. 7.泛型的好处22. 泛型的机制编辑22.1.1. 机制32.1.2. ...

  8. Hapoop原理及MapReduce原理分析

    Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序 ...

  9. Hadoop学习记录(4)|MapReduce原理|API操作使用

    MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce( ...

随机推荐

  1. 适配Android10 拍照,相册,裁剪,上传图片

    这篇文章主要介绍了适配Android 10(Q)后,调用系统拍照,系统相册,系统裁剪和上传问题,这是一个很常用的功能,但是在Android 6.0,Android 7.0和Android 10.0以上 ...

  2. 结合scipy.linalg在Python中使用线性系统

    摘要:将线性代数概念应用到实际问题中scipy.linalg 使用 Python 和 NumPy处理向量和矩阵 使用线性系统模拟实际问题 使用求解线性系统 scipy.linalg 本文分享自华为云社 ...

  3. STP工作流程

    第一步:选择一个根网桥: 第二步:在每个非根网乔上选举一个根端口: 第三步:在每个网段上选举一个指定端口: 第四步:阻塞非根,非指定端口:

  4. SpringBoot监听redis过期key

    开启过期监听 vim /etc/redis.conf 取消notify-keyspace-events Elg的注释 pom.xml 添加: <dependency> <groupI ...

  5. ASP.Net Core Web Api 使用 IdentityServer4 最新版 踩坑记录

    辅助工具 日志追踪包 : Serilog.AspNetCore 源码查看工具 : ILSpy 项目环境 ###: ASP.NetCore 3.1 IdentityServer4 4.0.0+ 主题内容 ...

  6. Nacos 服务注册的原理

    Nacos 服务注册需要具备的能力: 服务提供者把自己的协议地址注册到Nacos server 服务消费者需要从Nacos Server上去查询服务提供者的地址(根据服务名称) Nacos Serve ...

  7. 11.SpringMVC之HttpMessageConverter

    HttpMessageConverter简介 HTTP 请求和响应的传输是字节流,意味着浏览器和服务器通过字节流进行通信.但是,使用 Spring,controller 类中的方法返回纯 String ...

  8. linux(4)----------ssh config详解

    1.概述 ~~  config为了方便我们批量管理多个ssh ~~  config存放在~/.ssh/config                 .XX代表隐藏目录 ~~  config配置语法 2 ...

  9. CAS 的ABA 问题

    CAS CAS:Compare and Swap, 翻译成比较并交换. java.util.concurrent包中借助CAS实现了区别于synchronized同步锁的一种乐观锁. 其原理是CAS有 ...

  10. 常用数据库JDBC

    JDBC的URL=协议名+子协议名+数据源名.1. 协议名总是"jdbc".2.子协议名由JDBC驱动程序的编写者决定.3. 数据源名也可能包含用户与口令等信息:这些信息也可单独提 ...