本题是运用LCT来维护一个最小生成树。

是一个经典的套路

题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径。

那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维

那么这个对于这个题来说,我们考虑,可以先按照a从小到大排序,然后顺次加入每条边,这样每次加入的边一定是有可能会更新到\(ans\)的.

对于一条边\(u->v\),如果\(u\)和\(v\)不在一个联通块里面的话,那么就直接连上这个边,然后尝试更新答案

如果在同一个联通块里面呢,我们就判断\(u\)到\(v\)的路径上的\(b\)值的最大值,如果小于当前的边的\(b\),那么这条边就有可能会更新答案,所以就把原来的边删掉,然后\(link\)当前边。

不过一个需要注意的地方就是

每次不管是加入或者不加入,都需要对\(ans\)进行更新(不需要担心答案的覆盖,因为不优的答案永远是会被优的答案提前更新到一次的)

同时维护边的时候,我是选择了\(map\)

上代码

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 4e5+1e2; struct Node{
int x,y,a,b;
}; Node a[maxn]; int ch[maxn][3];
int fa[maxn],rev[maxn];
int mx[maxn],mxpos[maxn];
int val[maxn];
int n,m; int son(int x)
{
if (ch[fa[x]][0]==x) return 0;
else return 1;
} bool notroot(int x)
{
return ch[fa[x]][0]==x || ch[fa[x]][1]==x;
} void update(int x)
{
mx[x]=val[x];
mxpos[x]=x;
if (ch[x][0])
{
if (mx[ch[x][0]]>mx[x])
{
mx[x]=mx[ch[x][0]];
mxpos[x]=mxpos[ch[x][0]];
}
}
if (ch[x][1])
{
if (mx[ch[x][1]]>mx[x])
{
mx[x]=mx[ch[x][1]];
mxpos[x]=mxpos[ch[x][1]];
}
}
} void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
} void pushdown(int x)
{
if (rev[x])
{
if (ch[x][1]) reverse(ch[x][1]);
if (ch[x][0]) reverse(ch[x][0]);
rev[x]=0;
}
} void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
} int st[maxn]; void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while (notroot(y)) y=fa[y],st[++cnt]=y;
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y))
{
if (b==c) rotate(y);
else rotate(x);
}
rotate(x);
}
update(x);
} void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
//for(expose();pfa;splay()) pfa->expose(),pfa->set_ch(1,this),pfa=0;
//expose(x);while(splice(x));return 0;
} void makeroot(int x)
{
access(x);
splay(x);
reverse(x);
} int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
return x;
} void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
} void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
} void cut(int x,int y)
{
split(x,y);
if (ch[x][0] || ch[x][1] || fa[x]!=y || ch[y][son(x)^1]) return;
fa[x]=ch[y][0]=0;
} int ans=1e9; bool cmp(Node a,Node b)
{
return a.a<b.a;
} int main()
{
n=read(),m=read();
for (int i=1;i<=m;i++)
{
a[i].x=read(),a[i].y=read();
a[i].a=read(),a[i].b=read();
}
sort(a+1,a+1+m,cmp);
for (int i=1;i<=m;i++)
{
val[i+n]=a[i].b;
if (findroot(a[i].x)==findroot(a[i].y))
{
split(a[i].x,a[i].y);
int now = mxpos[a[i].y];
if (mx[a[i].y]<a[i].b) continue;
now-=n;
cut(a[now].x,now+n);
cut(a[now].y,now+n);
//cout<<a[now].x<<" "<<a[now].y<<endl;
link(a[i].x,i+n);
link(a[i].y,i+n);
}
else
{
val[i+n]=a[i].b;
link(a[i].x,i+n);
link(a[i].y,i+n);
}
if (findroot(1)!=findroot(n)) continue;
split(1,n);
ans=min(ans,mx[n]+a[i].a);
// cout<<ans<<endl;
}
if (ans==1e9) ans=-1;
cout<<ans;
return 0;
}

洛谷2387 NOI2014魔法森林(LCT维护最小生成树)的更多相关文章

  1. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  2. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  3. P2387 [NOI2014]魔法森林 LCT维护最小生成树

    \(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...

  4. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  5. [BZOJ3669] [NOI2004] 魔法森林 LCT维护最小生成树

    题面 一开始看到这道题虽然知道是跟LCT维护最小生成树相关的但是没有可以的去想. 感觉可以先二分一下总的精灵数,但是感觉不太好做. 又感觉可以只二分一种精灵,用最小生成树算另一种精灵,但是和似乎不单调 ...

  6. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  7. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  8. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  9. 【BZOJ 3669】 [Noi2014]魔法森林 LCT维护动态最小生成树

    这道题看题意是在求一个二维最小瓶颈路,唯一可行方案就是枚举一维在这一维满足的条件下使另一维最小,那么我们就把第一维排序利用A小的边在A大的情况下仍成立来动态加边维护最小生成树. #include &l ...

随机推荐

  1. dpkg:处理 xxx (--configure)时出错解决办法,也可用于卸载软件出错的情况

    dpkg:处理 xxx (--configure)时出错解决办法今早安装nfs时出现问题,找到该文,备份留用.然后在网上找到了这片文章,按步骤走就解决了,中间会提示自动卸载一下,执行那个命令就好了,我 ...

  2. 回调与Promise

    Promise 对象就是用于表示一个异步操作的最终状态(成功或失败).它的流程就是在什么状态下需要执行什么样的操作. resolve简单理解就是一步操作执行成功后的回调函数 then是Promise对 ...

  3. MySQL-SQL基础-查询2

    mysql> create table customer(mid char(5) primary key,th date,sex char(1) default '0'); Query OK, ...

  4. vue 前端反向代理后台,解决跨域问题

    // 和 src 同层的 config 文件夹下的 index.js dev 里面的 // Paths     assetsSubDirectory: 'static',     assetsPubl ...

  5. SpringBoot整合定时任务----Scheduled注解实现(一个注解全解决)

    一.使用场景 定时任务在开发中还是比较常见的,比如:定时发送邮件,定时发送信息,定时更新资源,定时更新数据等等... 二.准备工作 在Spring Boot程序中不需要引入其他Maven依赖 (因为s ...

  6. Django项目使用requirements.txt文件

    1.生成requirements.txt pip freeze > requirements.txt 2.使用requirements.txt pip install -r requiremen ...

  7. python实现遥感图像阈值分割

    1.阈值分割 import os import cv2 import numpy as np import matplotlib.pyplot as plt from osgeo import gda ...

  8. Cython 模块扩展 - 编程语言 替代实现 应用领域 汇总一览

    Python 本身只是一种编程语言规范,可以使用其它编程语言实现它或扩展它:譬如:采有 Python C Java .Net 等重实现 Python,而采用 Python C/C++ C# Java ...

  9. 不写注释的程序员-Models

    Models 不写注释的程序员-Models # This is an auto-generated Django model module. # You'll have to do the foll ...

  10. Identity用户管理入门一(框架搭建)

    理论知识微软官方文档最完整,最详细,这里只一步步的介绍如何使用,地址:https://docs.microsoft.com/zh-cn/aspnet/core/security/authenticat ...