题目描述

我们常常会说这样的话:“X年是自Y年以来降雨量最多的”。它的含义是X年的降雨量不超过Y年,且对于任意\(Y<Z<X\),Z年的降雨量严格小于X年。例如2002,2003,2004和2005年的降雨量分别为4920,5901,2832和3890,则可以说“2005年是自2003年以来最多的”,但不能说“2005年是自2002年以来最多的”由于有些年份的降雨量未知,有的说法是可能正确也可以不正确的。

输入输出格式

输入格式:

输入仅一行包含一个正整数n,为已知的数据。以下n行每行两个整数\(yi\)和\(ri\),为年份和降雨量,按照年份从小到大排列,即\(yi<yi+1\)。下一行包含一个正整数m,为询问的次数。以下m行每行包含两个数Y和X,即询问“X年是自Y年以来降雨量最多的。”这句话是必真、必假还是“有可能”。

输出格式:

对于每一个询问,输出true,false或者maybe。

简单来说!对于一个询问来说\(x,y\),我们需要满足\(x\ge y>z 其中z\in[x+1,y-1]\)

一眼看过去QwQ

这个题难道不是区间维护最大值,不就OK了吗?

一写,发现完美gg!!

进入正题:

首先我们发现年份是非常大的,所以需要将离散化,同时又方便我们统计有没有未知的年份\(maybe\)的

那么我们就从小到大依次将年份标号为\(1 - n\),然后如果当前的年份比前一个年份大1以上,那么就将给他赋一个1的权值

那么我们统计两个年份之间有没有未知的年的时候,我们需要求一个区间和,就可以得知了

接下来是处理询问,首先我们要知道询问种给定的两个年份不一定是都知道的

那么我们应该怎么判断这个年份是不是知道的呢?

只需要开一个数组,记录所有出现的年份,然后\(lower_bound\)一下,看一下和它本身一不一样就行了

int getpos(int x)
{
if (x<ss[1]) return ss[1];
if (x>ss[n]) return ss[n];
return ss[lower_bound(ss,ss+1+n,x)-ss];
}

所以需要分类讨论:

当$x!=getpos(x) 且 y!=getpos(y) \(的时候,一定是\)maybe$

当$x==getpos(x) 且 y!=getpos(y) $的时候,我们需要把y跳到第一个已知的年(就是比他小的最大的)

if (y>ss[n]) y=ss[n];
else
y=ss[lower_bound(ss,ss+1+n,y)-ss-1];

然后比较中间的数,是否都小于x,如果存在大于等于的x的年份,那一定是\(false\)否则就是\(maybe\)

当\(x!=getpos(x) 且 y==getpos(y)\)的时候,同理

当\(x==getpos(x) 且 y==getpos(y)\)的时候

我们就是要满足\(x\ge y>z 其中z\in[x+1,y-1]\)就可以,那么求一个中间区间的最大值,然后比较一下就可以

如果中间区间的query不等于区间长度,那就是maybe

我建议,就是先判断\(false\)接着判断\(true\)else就是\(maybe\)

一些细节之间看代码吧

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<map>
#include<vector> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 300010; struct Node{
int mx,mn;
int sum;
}; Node f[4*maxn];
int n,m;
int a[maxn];
int c[maxn]; void up(int root)
{
f[root].mx=max(f[2*root].mx,f[2*root+1].mx);
f[root].mn=min(f[2*root].mn,f[2*root+1].mn);
f[root].sum=f[2*root].sum+f[2*root+1].sum;
} void build(int root,int l,int r)
{
if (l==r)
{
f[root].mn=f[root].mx=a[l];
f[root].sum=c[l];
return;
}
int mid = (l+r) >> 1;
build(2*root,l,mid);
build(2*root+1,mid+1,r);
up(root);
} int querymax(int root,int l,int r,int x,int y)
{
if (l>r || x>y) return -2e9;
if (x<=l && r<=y)
{
return f[root].mx;
}
int mid = (l+r) >> 1;
int ans = -2e9;
if (x<=mid) ans=max(ans,querymax(2*root,l,mid,x,y));
if (y>mid) ans=max(ans,querymax(2*root+1,mid+1,r,x,y));
return ans;
} int querysum(int root,int l,int r,int x,int y)
{
if (l>r || x>y) return 0;
if (x<=l && r<=y)
{
return f[root].sum;
}
int mid = (l+r) >> 1;
int ans = 0;
if (x<=mid) ans+=querysum(2*root,l,mid,x,y);
if (y>mid) ans+=querysum(2*root+1,mid+1,r,x,y);
return ans;
} int front;
int ss[maxn]; int getpos(int x)
{
if (x<ss[1]) return ss[1];
if (x>ss[n]) return ss[n];
return ss[lower_bound(ss,ss+1+n,x)-ss];
} int get(int x)
{
if (x<ss[1]) return 1;
if (x>ss[n]) return n;
return lower_bound(ss,ss+1+n,x)-ss;
} int main()
{
scanf("%d",&n);
c[1]=1;
for (int i=1;i<=n;i++)
{
int x,y;
scanf("%d",&x);
scanf("%d",&a[i]);
if (i!=1 && x-front==1) c[i]=1;
ss[i]=x;
front=x;
}
ss[++n]=2e9; ss[0]=-2e9;
build(1,1,n); scanf("%d",&m);
// cout<<querymax(1,1,n,2,4)<<endl;
for (int i=1;i<=m;i++)
{
int x,y;
x=read(),y=read();
if (x!=getpos(x) && y!=getpos(y))
{
printf("maybe\n");
continue;
}
if (x!=getpos(x))
{
x=getpos(x);
int a1=querymax(1,1,n,get(x),get(y)-1);
int cnt = a[get(y)];
if (a1>=cnt) printf("false\n");
else printf("maybe\n");
continue;
}
if (y!=getpos(y))
{
if (y>ss[n]) y=ss[n];
else
y=ss[lower_bound(ss,ss+1+n,y)-ss-1];
int a1=querymax(1,1,n,get(x)+1,lower_bound(ss,ss+1+n,y)-ss);
//cout<<a1<<endl;
int cnt = a[get(x)];
if (a1>=cnt) printf("false\n");
else printf("maybe\n");
continue;
}
int l=get(x)+1,r=get(y);
int cnt = a[get(y)];
int cnt1=a[get(x)];
int a1=querymax(1,1,n,get(x)+1,get(y)-1);
int a3=querysum(1,1,n,get(x)+1,get(y));
if (a1>=cnt || cnt>cnt1) printf("false\n");
else if (a1<cnt && r-l+1==a3 && cnt<=cnt1) printf("true\n");
else printf("maybe\n");
}
return 0;
}

bzoj1067——SCOI2007降雨量(线段树,细节题)的更多相关文章

  1. BZOJ1067&P2471 [SCOI2007]降雨量[线段树裸题+细节注意]

    dlntqlwsl 很裸的一道线段树题,被硬生生刷成了紫题..可能因为细节问题吧,我也栽了一次WA50分.不过这个隐藏条件真的对本菜鸡来说不易发现啊. 未知的年份连续的就看成一个就好了,把年份都离散化 ...

  2. [bzoj1067][SCOI2007]降雨量——线段树+乱搞

    题目大意 传送门 题解 我国古代有一句俗话. 骗分出奇迹,乱搞最神奇! 这句话在这道题上得到了鲜明的体现. 我的方法就是魔改版线段树,乱搞搞一下,首先借鉴了黄学长的建树方法,直接用一个节点维护年份的区 ...

  3. BZOJ1067 [SCOI2007]降雨量 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1067 题意概括 给定n组整数对(Xi,Yi),当Xi<Xj且Yi>=Yj时,如果对于任 ...

  4. [SCOI2007]降雨量 线段树和区间最值(RMQ)问题

      这道题是比较经典的 \(RMQ\) 问题,用线段树维护是比较简单好写的.比较难的部分是判断处理.如果没有想好直接打代码会调很久(没错就是我).怎么维护查询区间最大值我就不再这里赘述了,不懂线段树的 ...

  5. 【线段树 细节题】bzoj1067: [SCOI2007]降雨量

    主要还是细节分析:线段树作为工具 Description 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小 ...

  6. 【2019.10.7 CCF-CSP-2019模拟赛 T2】绝对值(abs)(线段树细节题)

    找规律 设\(p_i=a_{i+1}-a_i\),则答案就是\(\sum_{i=1}^{n-1}p_i\). 考虑若将\(a_i\)加上\(x\)(边界情况特殊考虑),就相当于是将\(p_{i-1}\ ...

  7. hdu-5023线段树刷题

    title: hdu-5023线段树刷题 date: 2018-10-18 13:32:13 tags: acm 刷题 categories: ACM-线段树 概述 这道题和上次做的那道染色问题一样, ...

  8. poj-2777线段树刷题

    title: poj-2777线段树刷题 date: 2018-10-16 20:01:07 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道线段树的染色问题,,, ...

  9. [AHOI 2009] 维护序列(线段树模板题)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小 ...

  10. [BZOJ1067][SCOI2007]降雨量

    [BZOJ1067][SCOI2007]降雨量 试题描述 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意 Y<Z<X,Z年的降雨量严格 ...

随机推荐

  1. JavaScript高级程序设计(读书笔记)之BOM

    BOM(Browser Object Model)提供了很多对象用于访问浏览器的功能,这些功能与任何网页内容无关. 8.1 window对象 BOM的核心对象是window,它表示一个浏览器实例.在浏 ...

  2. 存储系统管理(二)——Linux系统的swap分区、磁盘加密、磁盘阵列

    磁盘驱动器上的空间 , 用作当前未使用部分内存的溢出.这样 , 系统就能在主内存中留出空间用于储存当前正在处理的数据 , 并在系统面临主内存空间不足的风险时提供应急溢出. swap分区的建立: fdi ...

  3. CSS 是啥?前端小白入门级理解

    What is CSS? CSS stands for Cascading Style Sheets CSS describes how HTML elements are to be display ...

  4. introduction-to-64-bit-assembly

    introduction-to-64-bit-assembly NASM - The Netwide Assembler x86-64 下函数调用及栈帧原理 汇编语言基本概念简介 mycode

  5. Spring Boot 入门系列(二十四)多环境配置,3分钟搞定!

    之前讲过Spring Boot 的系统配置和自定义配置,实现了按照实际项目的要求配置系统的相关熟悉.但是,在实际项目开发过程中,需要面对不同的环境,例如:开发环境,测试环境,生产环境.各个环境的数据库 ...

  6. 安装redis 6.0.6

    1.规划目录:下载目录.安装目录.redis数据目录mkdir -p /data/appmkdir -p /opt/redis_cluster/redis_6379/{conf,logs,pid}mk ...

  7. vue七种实现组建通信的方法

    目录 组件通信 1.props 父组件--->子组件通信 2.$emit 子组件--->父组件传递 $emit与props结合 兄弟组件传值 3.bus(事件总线) 兄弟组件通信 4.$p ...

  8. github上使用C语言实现的线程池

    网上介绍线程池的知识很多,但是在代码实现上介绍的又不是那么多.而且给人的一种感觉就是:你的这种实现是正规的方式还是你自己的实现? 如果有这么个疑问,且想找一个靠谱的代码拿来使用,那么这个项目是个不错的 ...

  9. JNDI注入基础

    JNDI注入基础 一.简介 JNDI(The Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API,命名服务 ...

  10. CTFd+ubuntu service搭建等待更新

    CTFd是一款基于Apache2.0的协议的开源CTF平台,最新版本目前为1.20.该平台功能强大,基本上能够满足目前的CTF竞赛需求,同时,该平台提供了强大的插件功能,可以自己进行插件开发实现自己的 ...