TensorFlow简单线性回归

将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。

波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。

直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。

实现简单线性回归的具体做法

  1. 导入需要的所有软件包:                                                                                                                                                                                                                                                                                        
  2. 在神经网络中,所有的输入都线性增加。为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据:                                   
  3. 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其分解为
    X_train 和 Y_train。可以对数据进行归一化处理:                                                                                                                       
  4. 为训练数据声明 TensorFlow 占位符:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
  5. 创建 TensorFlow 的权重和偏置变量且初始值为零:                                                                                                                                                                                                                                                    
  6. 定义用于预测的线性回归模型:                                                                                                                                                                                                                                                                             
  7. 定义损失函数:                                                                                                                                                                                                                                                                                                     
  8. 选择梯度下降优化器:                                                                                                                                                                                                                                                                                         
  9. 声明初始化操作符:                                                                                                                                                                                                                                                                                             
  10. 现在,开始计算图,训练 100 次:                                                                                                                                                                                                                                                                       
      11. 查看结果:                                                                                                                                                                                                                                                                                                                   

解读分析

从下图中可以看到,简单线性回归器试图拟合给定数据集的线性线:

在下图中可以看到,随着模型不断学习数据,损失函数不断下降:

下图是简单线性回归器的 TensorBoard 图:

该图有两个名称范围节点 Variable 和 Variable_1,它们分别是表示偏置和权重的高级节点。以梯度命名的节点也是一个高级节点,展开节点,可以看到它需要 7 个输入并使用 GradientDescentOptimizer 计算梯度,对权重和偏置进行更新:

总结

本节进行了简单的线性回归,但是如何定义模型的性能呢?

有多种方法可以做到这一点。统计上来说,可以计算 R2 或将数据分为训练集和交叉验证集,并检查验证集的准确性(损失项)。

TensorFlow简单线性回归的更多相关文章

  1. 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归

    一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...

  2. TensorFlow从0到1之TensorFlow实现简单线性回归(15)

    本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...

  3. TensorFlow多元线性回归实现

    多元线性回归的具体实现 导入需要的所有软件包:   因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 appe ...

  4. SPSS数据分析—简单线性回归

    和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化 ...

  5. TensorFlow简单介绍和在centos上的安装

    ##tensorflow简单介绍: TensorFlow™ is an open source software library for numerical computation using dat ...

  6. Tensorflow简单CNN实现

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 少说废话多写代码~ """转换图像数据格式时需要将它们的颜色空间变为灰度空间,将图像尺寸修改为同一尺寸,并将标签依 ...

  7. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  8. day-12 python实现简单线性回归和多元线性回归算法

    1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...

  9. 机器学习(2):简单线性回归 | 一元回归 | 损失计算 | MSE

    前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回 ...

随机推荐

  1. IDAPython类库---idaapi.py的源码

    #ThisfilewasautomaticallygeneratedbySWIG(http://www.swig.org).#Version2.0.12##Donotmakechangestothis ...

  2. php、jsp、asp和aspx的区别

    目录 PHP JSP ASP ASP.NET PHP PHP是一种跨平台的服务器端的嵌入式脚本语言.它大量地借用C.Java 和 Perl 语言的语法,并耦合PHP自己的特性,使WEB开发者能够快速地 ...

  3. Windows核心编程 第六章 线程基础知识 (上)

    第6章 线程的基础知识 理解线程是非常关键的,因为每个进程至少需要一个线程.本章将更加详细地介绍线程的知识.尤其是要讲述进程与线程之间存在多大的差别,它们各自具有什么作用.还要介绍系统如何使用线程内核 ...

  4. c# p/invoke 无法加载指定的dll 找不到指定的模块 解决方法

    写的程序本来开始好好的,不知道怎么突然就出现了以上这个问题,纠结了好久,网上找了各种方法,比如什么嵌入dll,在system32下面放入dll等等,均宣告失败 下面把我的解决方法写出来,以后只要是这个 ...

  5. 迪杰斯特拉(Dijkstra) 最短路算法

    直接看B站视频吧: https://www.bilibili.com/video/BV1QK411V7V4/

  6. mongodb 在PHP中常见问题及解决方法

    1.$in needs an array 解决:查询用到in操作的时候,说in操作对应的不是我一个数组,或者数组索引不是以0开始的 方法:array_values重新生成一个索引为0开始的数组即可 $ ...

  7. 如何在 CentOS 8 中安装 Cockpit Web 控制台

    如何在 CentOS 8 中安装 Cockpit Web 控制台 [日期:2019-10-31] 来源:Linux公社  作者:醉落红尘 [字体:大 中 小]   在本文中,我们将帮助您在CentOS ...

  8. Mysql 数据库基本操作

    1.数据库设置密码 [root@db02 scripts]# mysqladmin -uroot password 123 2.使用密码登录 #1.正确的方式(不规范) [root@db02 scri ...

  9. nosql数据库之Redis持久化、备份和主从配置

    一.持久化方式 Redis提供了两种数据备份的方式,一种是RDB,另外一种是AOF.   RDB AOF 开启/关闭 开启:默认开启:关闭:把配置文件中所有的save注释就是关闭了 开启:在配置文件中 ...

  10. IT菜鸟之交换机基础配置

    交换机属于二层设备(隶属于osi七层模型中的第二层:数据链路层,不识别不支持IP地址)  > 用户模式 用于登录设备 # 特权模式 用于查询设备配置 (config)# 全局模式 用于配置设备 ...