SVM

  时间复杂度一般为O(N³)

  最重要的是推导过程

  NIPS(机器学习顶级会议)

  如果给定一个训练集,我们的目标是给定一个边界(一条线),离他最近的训练集样本路越宽越好

下面的几张图反映了SVM的推导过程,可惜,这个文本编辑框不太熟,没法解释具体个中过程,只好

  先说中间涉及的各个知识。

KEY IDEAS

推导过程:

  

                图(1)

  涉及到向量的投影,,以中间距离正负样本点几乎等宽的粗线为分界线 l,从原点引出一条向量W,垂直于 l,X正为正样本点,

X负为负样本点,大于1为正,小于1为负,以此分开。

   

                图(2)

将图(1)中右侧两个式子合并,得到②式,X为样本区域附近

  

                图(3)

  向量W的max是(正样本点-负样本点)*单位1,WIDTH的式子展开,将左下角的②式带入,

消元,只剩下2倍的向量W的长度值。

   

                图(4)

  转化成求左下角的式子。。。

  

              图(5)

  上图此处要用到多元偏导的知识,求极值,得出方框里的值

  

              图(6)

  化简后的值。

  

                图(7)

  终极BOSS!

核函数的作用: 将高维映射为低维,这一点涉及的知识点比较系统,有时间的话,重新整理发布一下,^_^

                图(8)

  

                图(9)

五、SVM推导过程的更多相关文章

  1. [ML从入门到入门] 支持向量机:从SVM的推导过程到SMO的收敛性讨论

    前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持 ...

  2. 机器学习笔记4:SVM支持向量积的推导过程

    内容来自:https://github.com/GreedyAIAcademy/Machine-Learning 最初 支持向量机的目的:找到一条好的分割线 什么杨的分割线最好? 有最大间隔的分割线最 ...

  3. SVM计算过程,对偶形式,核函数

    SVM是一个分类方法,用w^X+b定义分类函数, 于是求w.b,为寻最大间隔,引出1/2||w||^2,继而引入拉格朗日因子,化为对单一因数对偶变量a的求解(求解过程中会涉及到一系列最优化或凸二 次规 ...

  4. XGBoost 完整推导过程

    参考: 陈天奇-"XGBoost: A Scalable Tree Boosting System" Paper地址: <https://arxiv.org/abs/1603 ...

  5. 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...

  6. BP神经网络推导过程详解

    BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 ...

  7. 1014 C语言文法定义与C程序的推导过程 程序:冒泡算法C程序(语法树)

    阅读并理解提供给大家的C语言文法文件. 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 给出一段C程序,画出用上述文法产生这段C程序的完整语法树. 程序:冒泡算法C程序 点此文字查看原图 ...

  8. 1029 C语言文法定义与C程序的推导过程

    1 阅读并理解提供给大家的C语言文法文件. 2 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 3 给出一段C程序,写出用上述文法产生这段C程序的推导过程. program → exte ...

  9. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

随机推荐

  1. SpringMVC请求参数解析

    请求参数解析 客户端请求在handlerMapping中找到对应handler后,将会继续执行DispatchServlet的doPatch()方法. 首先是找到handler对应的适配器. Hand ...

  2. spring boot最新版使用几个坑解决

    <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent ...

  3. Python容器数据类型之间的转换

    强制转换成字符串 str() 将列表(list)转为字符串 var1 = [1, 2, 3, 4] var2 = str(var1) print(type(var2)) # <class 'st ...

  4. Spring Security 上

    Spring Security 上 Security-dome 1.创建项目 创建一个Spring Boot项目,不用加入什么依赖 2.导入依赖 <dependencies> <!- ...

  5. 路由器逆向分析------在Linux上安装IDA Pro

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/69665905 01.在Linux系统上安装Linux版本的IDA Pro Linu ...

  6. UVA10340子序列

    题意:       给你两个串,问你第二个第一个串是否是第一个串删除0个或多个字母得到的? 思路:       直接模拟就行了,在第二个串中去按顺序更新第一个串的下标,好像没说明白啊,不管了,水题,不 ...

  7. UVA11292杀怪

    题意:      一个怪物有N个头,每个头都有半径,然后有M个骑士,每个骑士能砍掉半径小于等于 X[i]的头,花费为X[i],并且一个骑士只能用一次,问砍掉怪物所有头的最小花费. 思路:       ...

  8. 0901-生成对抗网络GAN的原理简介

    0901-生成对抗网络GAN的原理简介 目录 一.GAN 概述 二.GAN 的网络结构 三.通过一个举例具体化 GAN 四.GAN 的设计细节 pytorch完整教程目录:https://www.cn ...

  9. axios提交表单

    后端使用@RequestBody接收jsons数据 因为后端接收json数据,所以前端也要发送json 项目的前端是使用layui的数据表单 案例方法 方法一:JSON字符串 提交的数据格式 {&qu ...

  10. ThreadLocal内存溢出代码演示和原因分析!

    ThreadLocal 翻译成中文是线程本地变量的意思,也就是说它是线程中的私有变量,每个线程只能操作自己的私有变量,所以不会造成线程不安全的问题. ​ 线程不安全是指,多个线程在同一时刻对同一个全局 ...