主流消息队列选型对比分析

基础项对比

可用性、可靠性对比

功能性对比

对比分析

  • Kafka:系统间的流数据通道
  • RocketMQ:高性能的可靠消息传输
  • RabbitMQ:可靠消息传输

RocketMQ剖析

RocketMQ拓扑图

RocketMQ架构组成

  • Producer:消息发布的角色,支持分布式集群方式部署。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制,可以满足大多数用户的需求。
  • NameServer:NameServer是一个非常简单的Topic路由注册中心,其角色类似Dubbo中的zookeeper,支持Broker的动态注册与发现。主要包括两个功能:Broker管理,NameServer接受Broker集群的注册信息并且保存下来作为路由信息的基本数据。然后提供心跳检测机制,检查Broker是否还存活;路由信息管理,每个NameServer将保存关于Broker集群的整个路由信息和用于客户端查询的队列信息。然后Producer和Conumser通过NameServer就可以知道整个Broker集群的路由信息,从而进行消息的投递和消费。NameServer通常也是集群的方式部署,各实例间相互不进行信息通讯。Broker是向每一台NameServer注册自己的路由信息,所以每一个NameServer实例上面都保存一份完整的路由信息。当某个NameServer因某种原因下线了,Broker仍然可以向其它NameServer同步其路由信息,Producer,Consumer仍然可以动态感知Broker的路由的信息。
  • BrokerServer:消息中转角色,负责存储消息、转发消息。代理服务器在RocketMQ系统中负责接收从生产者发送来的消息并存储、同时为消费者的拉取请求作准备。代理服务器也存储消息相关的元数据,包括消费者组、消费进度偏移和主题和队列消息等。

部署架构

集群工作流程

  • 启动NameServer,NameServer起来后监听端口,等待Broker、Producer、Consumer连上来,相当于一个路由控制中心。
  • Broker启动,跟所有的NameServer保持长连接,定时发送心跳包。心跳包中包含当前Broker信息(IP+端口等)以及存储所有Topic信息。注册成功后,NameServer集群中就有Topic跟Broker的映射关系。
  • 收发消息前,先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,也可以在发送消息时自动创建Topic。
  • Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取当前发送的Topic存在哪些Broker上,轮询从队列列表中选择一个队列,然后与队列所在的Broker建立长连接从而向Broker发消息。
  • Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取当前订阅Topic存在哪些Broker上,然后直接跟Broker建立连接通道,开始消费消息。
 

RocketMQ设计

消息存储

  1. CommitLog:存储消息的主体。product生产的消息主要是顺序写入日志文件,当文件满了,写入下一个文件。
  2. ConsumerQueue:消息的消费队列。引入的目的主要是提高消息消费的性能,由于RocketMQ是基于主题topic的订阅模式,消息消费是针对主题进行的,如果要遍历commitlog文件中根据topic检索消息是非常低效的。
  3. FileIndex:索引文件。提供了一种可以通过key或时间区间来查询消息的方法

消息刷盘

  1. 同步刷盘:性能低,可靠性高。
  2. 异步刷盘:性能高,可靠性低。
一般线上采用异步刷盘+异步复制。如果保证绝对可靠性需要同步刷盘+同步双写,但性能很低,可以针对特别重要的消息,单独部署broker。

协议设计与编解码

在Client和Server之间完成一次消息发送时,需要对发送的消息进行一个协议约定,因此就有必要自定义RocketMQ的消息协议。同时,为了高效地在网络中传输消息和对收到的消息读取,就需要对消息进行编解码。在RocketMQ中,RemotingCommand这个类在消息传输过程中对所有数据内容的封装,不但包含了所有的数据结构,还包含了编码解码操作。
Header字段 类型 Request说明 Response说明
code int 请求操作码,应答方根据不同的请求码进行不同的业务处理 应答响应码。0表示成功,非0则表示各种错误
language LanguageCode 请求方实现的语言 应答方实现的语言
version int 请求方程序的版本 应答方程序的版本
opaque int 相当于requestId,在同一个连接上的不同请求标识码,与响应消息中的相对应 应答不做修改直接返回
flag int 区分是普通RPC还是onewayRPC的标志 区分是普通RPC还是onewayRPC的标志
remark String 传输自定义文本信息 传输自定义文本信息
extFields HashMap<String, String> 请求自定义扩展信息 响应自定义扩展信息

传输内容主要可以分为以下4部分:
(1) 消息长度:总长度,四个字节存储,占用一个int类型;
(2) 序列化类型&消息头长度:同样占用一个int类型,第一个字节表示序列化类型,后面三个字节表示消息头长度;
(3) 消息头数据:经过序列化后的消息头数据;
(4) 消息主体数据:消息主体的二进制字节数据内容;
public ByteBuffer encode() {
// 1> header length size
int length = 4; // 2> header data length
byte[] headerData = this.headerEncode();
length += headerData.length; // 3> body data length
if (this.body != null) {
length += body.length;
} ByteBuffer result = ByteBuffer.allocate(4 + length); // length
result.putInt(length); // header length
result.put(markProtocolType(headerData.length, serializeTypeCurrentRPC)); // header data
result.put(headerData); // body data;
if (this.body != null) {
result.put(this.body);
} result.flip(); return result;
}

负载均衡

RocketMQ中的负载均衡都在Client端完成,具体来说的话,主要可以分为Producer端发送消息时候的负载均衡和Consumer端订阅消息的负载均衡。

product端负载均衡

  1. 定期获取TopicPublishInfo路由信息
  2. product发送消息时选取一个messageQueue发送消息(默认的负载均衡策略:随机递增取模)
  3. 容错机制(故障延时:指对之前失败的,按一定的时间做退避。发送失败默认有会有重试(同步:2次,异步:1次)同步重试会避开上一次发失败的broker

Consumer端负载均衡

mq消息消费方式
PUSH :消息队列主动将消息推送给消费者
PULL:消费者主动去消息队列拉取
push 和pull 两种方式的对比:
push:消息实时性高,但没有考虑消费端的消费能力
pull:消息实时性低,可能造成大量无效请求
consumer获取消息的模式:
在RocketMQ中,Consumer端的两种消费模式(Push/Pull)都是基于拉模式来获取消息的,为了平衡push/pull的各自的弊端,使用了一种长轮询机制来拉取消息。Push模式只是对pull模式的一种封装,其本质实现为消息拉取线程在从服务器拉取到一批消息后,然后提交到消息消费线程池后,又继续向服务器再次尝试拉取消息。如果未拉取到消息,则延迟一下又继续拉取。
负载均衡
  1. 定时发送心跳包到broker
  2. consumer开始订阅消息会rebalance 一次
  3. 定期rebalance(20s)
  • 获取队列信息
  • 获取消费者信息
  • 排序平均分配(默认)
  • 与上次结果对比

RocketMQ功能实现分析

RocketMQ延时消息

rockeketMQ支持18个级别的延时等级,默认值为:“1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h”

实现原理

  1. 替换主题SCHEDULE_TOPIC_XXX,根据延时等级放入对应的队列
  2. 18个Queue对应18个延时等级
  3. 每个队列创建定时任务进行调度
  4. 恢复到期消息重新投递到真实的topic

消息重试

Consumer消费消息失败后,RocketMQ提供一种重试机制,令消息再消费一次。RocketMQ会为每个消费组都设置一个Topic名称为“%RETRY%+consumerGroup”的重试队列(这里需要注意的是,这个Topic的重试队列是针对消费组,而不是针对每个Topic设置的),用于暂时保存因为各种异常而导致Consumer端无法消费的消息。考虑到异常恢复起来需要一些时间,会为重试队列设置多个重试级别,每个重试级别都有与之对应的重新投递延时,重试次数越多投递延时就越大。RocketMQ对于重试消息的处理是先保存至Topic名称为“SCHEDULE_TOPIC_XXXX”的延迟队列中,后台定时任务按照对应的时间进行Delay后重新保存至“%RETRY%+consumerGroup”的重试队列中。

消费失败策略

  • 重试16次
  • 重试时间间隔递增(通过延时对列完成)
  • 失败后进入私信队列

事务消息

public class TransactionProducer {
public static void main(String[] args) throws MQClientException, InterruptedException {
TransactionListener transactionListener = new TransactionListenerImpl();
TransactionMQProducer producer = new TransactionMQProducer("please_rename_unique_group_name");
ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2000), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setName("client-transaction-msg-check-thread");
return thread;
}
}); producer.setExecutorService(executorService);
//事务监听器
producer.setTransactionListener(transactionListener);
producer.start(); String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
for (int i = 0; i < 10; i++) {
try {
Message msg =
new Message("TopicTest1234", tags[i % tags.length], "KEY" + i,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.sendMessageInTransaction(msg, null);
System.out.printf("%s%n", sendResult); Thread.sleep(10);
} catch (MQClientException | UnsupportedEncodingException e) {
e.printStackTrace();
}
} for (int i = 0; i < 100000; i++) {
Thread.sleep(1000);
}
producer.shutdown();
}
} public interface TransactionListener {
/**
* When send transactional prepare(half) message succeed, this method will be invoked to execute local transaction.
*
* @param msg Half(prepare) message
* @param arg Custom business parameter
* @return Transaction state
*/
LocalTransactionState executeLocalTransaction(final Message msg, final Object arg); /**
* When no response to prepare(half) message. broker will send check message to check the transaction status, and this
* method will be invoked to get local transaction status.
*
* @param msg Check message
* @return Transaction state
*/
LocalTransactionState checkLocalTransaction(final MessageExt msg);
}

RocketMQ事务消息流程概要

上图说明了事务消息的大致方案,其中分为两个流程:正常事务消息的发送及提交、事务消息的补偿流程。
1.事务消息发送及提交:
(1) 发送消息(half消息)。
  • HALF消息:RMQ_SYS_TRANS_HALF_TOPIC(临时存放消息信息)

    • 事务消息替换主体,保存原主题和对列信息
    • 半消息对Consumer不可见,不会被投递
(2) 服务端响应消息写入结果。
(3) 根据发送结果执行本地事务(如果写入失败,此时half消息对业务不可见,本地逻辑不执行)。
(4) 根据本地事务状态执行Commit或者Rollback(Commit操作生成消息索引,消息对消费者可见)
 
2.补偿流程:
(1) 对没有Commit/Rollback的事务消息(pending状态的消息),从服务端发起一次“回查”
(2) Producer收到回查消息,检查回查消息对应的本地事务的状态
(3) 根据本地事务状态,重新Commit或者Rollback
其中,补偿阶段用于解决消息Commit或者Rollback发生超时或者失败的情况。

怎么记录二阶段的操作?

RocketMQ事务消息方案中引入了Op消息的概念,用Op消息标识事务消息已经确定的状态(Commit或者Rollback)。如果一条事务消息没有对应的Op消息,说明这个事务的状态还无法确定(可能是二阶段失败了)。引入Op消息后,事务消息无论是Commit或者Rollback都会记录一个Op操作。Commit相对于Rollback只是在写入Op消息前创建Half消息的索引。
  • OP消息:RMQ_SYS_TARNS_OP_HALF_TOPIC(记录二阶段的操作)

    • Rollback:只做记录
    • Commit:根据备份信息重新构造消息并投递
 

扩展

 

RocketMQ事务消息对业务侵入性强的解决方案

  1. 开启事务
  2. 操作本地业务数据
  3. 插入事务消息数据
  4. 提交事务
  5. 发送mq消息
  6. mq send响应
  7. mq消息发送成功删除事务消息表中的记录
  8. 定时补偿模块扫描事务消息表
  9. 补偿发送mq消息
  10. mq send 响应
  11. mq消息发送成功删除事务消息表中的记录

伪代码

@Transactional
public void pay(Order order){
PayTransaction t = buildPayTransaction(order);
payDao.append(t);
//producer.sendMessage(buildMessage(t));
final Message message = buildMessage(t);
messageDao.insert(message);
//在事务提交后执行
triggerAfterTransactionCommit(()->{
messageClient.send(message);
messageDao.delete(message);
});
}
 

事务消息表

CREATE TABLE mq_message(
id bigint NOT NULL AUTO_INCREMENT,
content varchar(255) NOT NULL,
topic char(64) NOT NULL,
tag char(64),
status tinyint,
createtime timestamp,
PRIMARY KEY(id) )

任意时间延时消息实现方案

改造步骤

  1. Dispatch改造
  2. 延时消息存储
  3. 内存索引(时间轮)
  4. 延时消息投递
 
Dispatch改造点,增加一种特殊队列存储任意时间延时 改动量比较大,可以增加一种消息类型即可改造
class CommitLogDispatcherBuildConsumeQueue implements CommitLogDispatcher {

@Override
public void dispatch(DispatchRequest request) {
final int tranType = MessageSysFlag.getTransactionValue(request.getSysFlag());
switch (tranType) {
case MessageSysFlag.TRANSACTION_NOT_TYPE:
case MessageSysFlag.TRANSACTION_COMMIT_TYPE:
DefaultMessageStore.this.putMessagePositionInfo(request);
break;
case MessageSysFlag.TRANSACTION_PREPARED_TYPE:
case MessageSysFlag.TRANSACTION_ROLLBACK_TYPE:
break;
}
}
}

RocketMQ应用及原理剖析的更多相关文章

  1. ASP.NET Core 运行原理剖析2:Startup 和 Middleware(中间件)

    ASP.NET Core 运行原理剖析2:Startup 和 Middleware(中间件) Startup Class 1.Startup Constructor(构造函数) 2.Configure ...

  2. ASP.NET Core 运行原理剖析1:初始化WebApp模版并运行

    ASP.NET Core 运行原理剖析1:初始化WebApp模版并运行 核心框架 ASP.NET Core APP 创建与运行 总结 之前两篇文章简析.NET Core 以及与 .NET Framew ...

  3. 【Xamarin挖墙脚系列:Xamarin.IOS机制原理剖析】

    原文:[Xamarin挖墙脚系列:Xamarin.IOS机制原理剖析] [注意:]团队里总是有人反映卸载Xamarin,清理不完全.之前写过如何完全卸载清理剩余的文件.今天写了Windows下的批命令 ...

  4. 【Xamarin 跨平台机制原理剖析】

    原文:[Xamarin 跨平台机制原理剖析] [看了请推荐,推荐满100后,将发补丁地址] Xamarin项目从喊口号到现在,好几个年头了,在内地没有火起来,原因无非有三,1.授权费贵 2.贵 3.原 ...

  5. iPhone/Mac Objective-C内存管理教程和原理剖析

    http://www.cocoachina.com/bbs/read.php?tid-15963.html 版权声明 此文版权归作者Vince Yuan (vince.yuan#gmail.com)所 ...

  6. 【Xamain 跨平台机制原理剖析】

    原文:[Xamain 跨平台机制原理剖析] [看了请推荐,推荐满100后,将发补丁地址] Xamarin项目从喊口号到现在,好几个年头了,在内地没有火起来,原因无非有三,1.授权费贵 2.贵 3.原生 ...

  7. Python字符串原理剖析------万恶的+号

    字符串原理剖析pyc文件,执行python代码时,如果导入了其他的.py文件,那么执行过程中会自动生成一个与其同名的.pyc文件,该文件就是python解释器变异之后产生的字节码 PS:代码经过编译可 ...

  8. MapReduce/Hbase进阶提升(原理剖析、实战演练)

    什么是MapReduce? MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",和他们 ...

  9. ASP.NET Core 运行原理剖析

    1. ASP.NET Core 运行原理剖析 1.1. 概述 1.2. 文件配置 1.2.1. Starup文件配置 Configure ConfigureServices 1.2.2. appset ...

随机推荐

  1. Python推导式详解,带你写出比较精简酷炫的代码

    Python推导式详解,带你写出比较精简酷炫的代码 前言 1.推导式分类与用法 1.1 列表推导 1.2 集合推导 1.3 字典推导 1.4 元组推导?不存在的 2.推导式的性能 2.1 列表推导式与 ...

  2. idea创建maven项目时一直在 Process Running

    解决方案: 1.设置maven的配置 File--->Settings(Ctrl+Alt+S)--->Build--->Build Tools--->Maven--->R ...

  3. CSDN code使用

    常见错误:在linux下拷贝的时候有时候会出现cp:omitting directory的错误 ,例如 cp:omitting directory "bbs" 说明bbs目录下面还 ...

  4. [loj6051]PATH

    (不妨将下标改为从1开始) 参考loj2265中关于杨表的相关知识 构造一个$n$行且第$i$行有$a_{i}$个格子的杨表,依次记录其每一次增加的时间(范围为$[1,\sum_{i=1}^{n}a_ ...

  5. [noi1754]SA

    枚举T中失配的位置i,容易发现能够成立当且仅当存在一个以$T[0,i)$为后缀的前缀$S[0,a)$且$T(i,|T|)$是$S(a,|S|)$的一个前缀 考虑建立S的正序和倒序的两个后缀自动机,设$ ...

  6. 【Tool】MySQL安装

    MySQL安装 2019-11-07  14:30:32  by冲冲 本机 Windows7 64bit,MySQL是 mysql-8.0.18-winx64.zip. 1.官网下载 https:// ...

  7. Go语言程序结构之变量

    初识Go语言之变量 var声明创建一个具体类型的变量,然后给它附加一个名字,设置他的初始值,这种声明都是一个通用的形式: var name type = expression 在实际的开发中,为了方便 ...

  8. 删除本地仓库中的lastUpdated文件.bat

    @echo off @ ECHO. @ ECHO. @ ECHO. 说 明 @ ECHO ------------------------------------------------------- ...

  9. Web Api 宿主的搭建

    首先我们要清楚一个概念,宿主.宿主是什么意思?先从了解一下Hosting开始吧! 有关Hosting的基础知识 Hosting是一个非常重要,但又很难翻译成中文的概念.翻译成:寄宿,大概能勉强地传达它 ...

  10. Codeforces 605D - Board Game(树状数组套 set)

    Codeforces 题目传送门 & 洛谷题目传送门 事实上是一道非常容易的题 很容易想到如果 \(c_i\geq a_j\) 且 \(d_i\geq b_j\) 就连一条 \(i\to j\ ...