正题

题目链接:http://poj.org/problem?id=3734


题目大意

用思种颜色给\(n\)个格子染色,要求前两种颜色出现偶数次,求方案。

\(1\leq T\leq 100,1\leq n\leq 10^9\)


解题思路

反正是\(\text{EGF}\)的十分入门题了。

首先是\(\sum_{i=0}^{\infty}\frac{x^i}{i!}=e^x\)。

这题带标号计数所以求的是

\[(\sum_{i=0}^\infty\frac{x^{2i}}{2i!})^2\times (\sum_{i=0}^\infty\frac{x^i}{i!})^2
\]

嗯,后面那个就是\(e^x\),前面那个怎么搞。

考虑点花里胡哨的东西,\(e^{-x}=\sum_{i=0}^\infty (-1)^i\frac{x^i}{i!}\),然后我们就有

\[\sum_{i=0}^\infty\frac{x^{2i}}{2i!}=\frac{e+e^{-x}}{2}
\]

然后带进式子就是

\[(\frac{e^x+e^{-x}}{2})^2\times e^{2x}=\frac{e^{4x}+2e^{2x}+1}{4}
\]

然后\(e^{ax}=\sum_{i=0}^{\infty}a^i\frac{x^i}{i!}\),所以展开一下项就是

\[[x^n]=\frac{4^n+2^n\times 2}{4}=4^{n-1}+2^{n-1}
\]

时间复杂度\(O(T\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int P=10007;
int n,T;
int power(int x,int b){
int ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d",&n);n--;n%=(P-1);
printf("%d\n",(power(2,n)+power(4,n))%P);
}
}

POJ3734-Blocks【EGF】的更多相关文章

  1. POJ1390 Blocks 【动态规划】

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4173   Accepted: 1661 Descriptio ...

  2. P2012-拯救世界2【EGF】

    正题 题目链接:https://www.luogu.com.cn/problem/P2012 题目大意 \(12\)种东西排列成长度为\(n\)的序列,要求前四种出现奇数次,后四种出现偶数次,求方案. ...

  3. CF891E-Lust【EGF】

    正题 题目链接:https://www.luogu.com.cn/problem/CF891E 题目大意 \(n\)个数字的一个序列\(a_i\),每次随机选择一个让它减去一.然后贡献加上所有其他\( ...

  4. 查找文件【TLCL】

    locate locate 执行快速的路径名数据库搜索,输出每个与指定子字符串相匹配的路径名. locate bin/zip locate 命令的数据库是updatedb命令创建的. find loc ...

  5. 【ubuntu】开机一直“/dev/sda3:clean, XXX files, XXXX blocks”解决方法

    由于该电脑是实验室公用跑模型的机子,在解决过程中,发现是 cuda 导致一直进不了系统.原因是装了两个不同版本的cuda,一个9.2,另一个10.0,因为是公用的,目前尚不清楚,怎么同时装上两个的,也 ...

  6. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  7. 【原创】开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...

  8. 【转】DBMS_STATS.GATHER_TABLE_STATS详解

    转自http://blog.itpub.net/26892340/viewspace-721935/ [作用] DBMS_STATS.GATHER_TABLE_STATS统计表,列,索引的统计信息(默 ...

  9. 【Linux】将Oracle安装目录从根目录下迁移到逻辑卷

    [Linux]将Oracle安装目录从根目录下迁移到逻辑卷 1.1  BLOG文档结构图 1.2  前言部分 1.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到 ...

随机推荐

  1. 利用maven构建一个spring mvc的helloworld实例

    刚开始学习maven和spring mvc,学的云里雾里的 这里提供一个hello world实例,记录自己的学习之路 首先看maven官网的介绍 Apache Maven is a software ...

  2. LeetCoded第21题题解--合并两个有序链表

    21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出 ...

  3. PsSetCreateProcessNotifyRoutineEx 创建回调函数

    转载自http://blog.csdn.net/yushiqiang1688/article/details/5209597 最近要做一个进程监控的程序,功能很简单,就是创建和退出进程的时候,能触发我 ...

  4. Struts中整合的强大Ognl学习(一)

    测试使用了一个JavaBean的User,User中的Address单独封装再形成了一个JavaBean: 为了测试静态方法和静态变量调用,写了一个Util方法: 因为测试Ognl功能过多所以直接使用 ...

  5. Java抽象类(abstract)

    抽象类和接口 一.抽象类 1.什么是抽象类? 类和类之间具有共同的特征,将这些特征提取出来,形成的就是抽象类. 类到对象是实例化,对象到类是抽象. 抽象类和具体类是相对的概念."抽象&quo ...

  6. linux高级监控atop的使用

    一.centos安装 sudo yum -y install epel-release.noarch sudo yum -y install atop sudo systemctl enable at ...

  7. Redis的读写分离

    1.概述 随着企业业务的不断扩大,请求的并发量不断增长,Redis可能终会出现无法负载的情况,此时我们就需要想办法去提升Redis的负载能力. 读写分离(主从复制)是一个比较简单的扩展方案,使用多台机 ...

  8. 安全测试工具(1)- Burp Suite Pro的安装教程

    啥是Burp Suite 用于攻击web 应用程序的集成平台 程序员必备技能,不仅可以拿来做渗透测试.漏洞挖掘还能帮助程序员调试程序 Bug 它包含了许多Burp工具,这些不同的burp工具通过协同工 ...

  9. Linux常用命令 - rm命令详解

    21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html 删除/ ...

  10. Docker(42)- 镜像原理之联合文件系统

    前言 学习狂神老师的 Docker 系列课程,并总结 镜像是什么 镜像是一种轻量级.可执行的独立软件保,用来打包软件运行环境和基于运行环境开发的软件 他包含运行某个软件所需的所有内容,包括代码.运行时 ...