实验3:OpenFlow协议分析实践
作业链接:实验3:OpenFlow协议分析实践
一、实验目的
- 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
- 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。
二、实验环境
- 下载虚拟机软件Oracle VisualBox;
- 在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;
三、实验要求
(一)基本要求
1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。
主机 | IP地址 |
---|---|
h1 | 192.168.0.101/24 |
h2 | 192.168.0.102/24 |
h3 | 192.168.0.103/24 |
h4 | 192.168.0.104/24 |
- 构建拓扑
- 配置子网掩码和ip地址(只给出h1和h2的ip配置,其他是一样的)
- 检查
2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。
- 在构建拓扑之前打开wireshark(选择any),然后运行文件并pingall。
- 查看抓的包
1.OFPT_HELLO
从6633端口到43820端口,openflow1.0协议
从43820端口到6633端口,openflow1.5协议
2.OFPT_FEATURES_REQUEST 从6633端口到43820端口
3.OFPT_SET_CONFIG 从6633端口到43820端口
4.OFPT_PORT_STATUS 从43820端口到6633端口
5.OFPT_FEATURES_REPLY 从43820端口到6633端口
6.OFPT_PACKET_IN 从43820端口到6633端口
7.OFPT_PACKET_OUT 从6633端口到43820端口
8.OFPT_FLOW_MOD 从6633端口到43820端口
- 对应流程图如下:
3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
Transmission Control Protocol即TCP协议
(二)进阶要求
将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。
1.HELLO
struct ofp_header {
uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};
struct ofp_hello {
struct ofp_header header;
};
2.OFPT_FEATURES_REQUEST
源码与HELLO类似
3.OFPT_SET_CONFIG
/* Switch configuration. */
struct ofp_switch_config {
struct ofp_header header;
uint16_t flags; /* OFPC_* flags. */
uint16_t miss_send_len; /* Max bytes of new flow that datapath should
send to the controller. */
};
4.OFPT_PORT_STATUS
/* A physical port has changed in the datapath */
struct ofp_port_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_*. */
uint8_t pad[7]; /* Align to 64-bits. */
struct ofp_phy_port desc;
};
5.OFPT_FEATURES_REPLY
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */
uint32_t n_buffers; /* Max packets buffered at once. */
uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */
/* Features. */
uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */
/* Port info.*/
struct ofp_phy_port ports[0]; /* Port definitions. The number of ports
is inferred from the length field in
the header. */
};
/* Description of a physical port */
struct ofp_phy_port {
uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN];
char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */
/* Bitmaps of OFPPF_* that describe features. All bits zeroed if
* unsupported or unavailable. */
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised by the port. */
uint32_t supported; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */
};
6.OFPT_PACKET_IN
struct ofp_packet_in {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath. */
uint16_t total_len; /* Full length of frame. */
uint16_t in_port; /* Port on which frame was received. */
uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */
uint8_t pad;
uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word,
so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. */
};
7.OFPT_PACKET_OUT
struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */
uint16_t actions_len; /* Size of action array in bytes. */
struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t data[0]; */ /* Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};
8.OFPT_FLOW_MOD
struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /* Fields to match */
uint64_t cookie; /* Opaque controller-issued identifier. */
/* Flow actions. */
uint16_t command; /* One of OFPFC_*. */
uint16_t idle_timeout; /* Idle time before discarding (seconds). */
uint16_t hard_timeout; /* Max time before discarding (seconds). */
uint16_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -1).
Not meaningful for OFPFC_DELETE*. */
uint16_t out_port; /* For OFPFC_DELETE* commands, require
matching entries to include this as an
output port. A value of OFPP_NONE
indicates no restriction. */
uint16_t flags; /* One of OFPFF_*. */
struct ofp_action_header actions[0]; /* The action length is inferred
from the length field in the
header. */
};
struct ofp_action_header {
uint16_t type; /* One of OFPAT_*. */
uint16_t len; /* Length of action, including this
header. This is the length of action,
including any padding to make it
64-bit aligned. */
uint8_t pad[4];
};
四、个人总结
实验难度
本次实验大部分为验证性实验,相对于之前几次实验来说比较简单。主要是验证各个包传递的信息以及从哪里传到哪里。在实验过程中需要不断查阅资料,询问同学,难度算是很正常的。
实验过程遇到的困难及解决办法
- 主要遇到的问题是:经常没办法一次抓包就抓到所需要的全部包,总因为步骤不是很规范导致缺少某个包。
解决方法:最好在建立拓扑之前就打开wireshark,然后拓扑构建完成之后pingall,即可获取到所有的包。
个人感想
这次试验进一步学习了wireshark的使用,对wireshark的各项功能有了更加深刻的理解。其次也认识到了拓扑建立过程中所用到的协议,以及OpenFlow协议的数据交互的机制。有了这些理论知识的铺垫,我认为我能够在接下来的实践过程中游刃有余地完成任务。
实验3:OpenFlow协议分析实践的更多相关文章
- 软件定义网络实验记录⑤--OpenFlow 协议分析和 OpenDaylight 安装
一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接: 通过抓包获取 OpenFlow 协议,验证 OpenFlow 协议和版本,了解协议内 ...
- 实验 5:OpenFlow 协议分析和 OpenDaylight 安装
一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接;通过抓包获取 OpenFlow 协议,验证 OpenFlow 协议和版本,了解协议内容 ...
- 实验 5 :OpenFlow 协议分析和 OpenDaylight 安装
实验 5 :OpenFlow 协议分析和 OpenDaylight 安装 一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接: 通过抓包获 ...
- OpenFlow协议分析
OpenFlow协议分析实验手册 启动虚拟机mininet 和 控制器 ODL 启动wireshark,在控制器的ens32 网卡抓包 使用mininet创建简单拓扑,并连接控制器,指定交换机为ovs ...
- 实验 5:OpenFlow 协议分析和 OpenDaylight 安装
一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接:通过抓包获取 OpenFlow 协议,验证 OpenFlow 协议和版本,了解协议内容 ...
- SDN学习之OpenFlow协议分析
学习SDN相关的学习也已经有快半年了,期间从一无所知到懵懵懂懂,再到现在的有所熟悉,经历了许多,也走了不少弯路,其中,最为忌讳的便是,我在学习过程中,尚未搞明白OpenFlow协议的情况下,便开始对S ...
- 实战录 | 基于openflow协议的抓包分析
<实战录>导语 云端卫士<实战录>栏目定期会向粉丝朋友们分享一些在开发运维中的经验和技巧,希望对于关注我们的朋友有所裨益.本期分享人为云端卫士安全SDN工程师宋飞虎,将带来基于 ...
- OpenFlow协议1.0及1.3版本分析
OpenFlow是SDN控制器和交换之间交流的协议,在SDN领域有着十分重要的地位. OpenFlow协议发展到现在已经经过了1.0.1.3.1.4等版本.其中1.0和1.3版本使用的是最为广泛的. ...
- 实验八 应用层协议Ⅱ-FTP协议分析
实验八 应用层协议Ⅱ-FTP协议分析 一.实验目的 1.掌握FTP协议的实现原理. 2.了解控制通道和数据通道. 二.实验内容 用WareShark追踪ftp连接. 1.三次握手 2.ftp服务器回发 ...
随机推荐
- Mysql---mysqldump参数详细说明(转)
Mysqldump参数大全(参数来源于mysql5.5.19源码) mysqldump.exe一般会默认安装在C:\Program Files\MySQL\MySQL Server 5.5\bin 参 ...
- 【转】Linux tar命令详解
参考:https://blog.csdn.net/kkw1992/article/details/80000653 linux下最常用的打包程序就是tar了,使用tar程序打出来的包我们常称为tar包 ...
- 深入浅出Mybatis系列(五)---配置详解之settings设置
settings 中的设置是非常关键的,它们会改变 MyBatis 的运行时行为.下表描述了设置中各项的意图.默认值等. 设置参数 描述 有效值 默认值 cacheEnabled 该配置影响的所有映射 ...
- 关于Ubuntu18.04 linux系统使用安装JDK Mysql
平台部署 一.安装JDK step1.下载OracleJDKstep2. 解压step3. 加入环境变量 具体操作如下: lemon@ubuntu:~$ cd ~/download/ lemon@ub ...
- ConcurrentModificationException异常原因和解决方法
一.ConcurrentModificationException异常出现的原因 先看下面这段代码: public class Test { public static void main(Strin ...
- sizeof()和 strlen()的区别 --- 个人笔记
在学习C语言和linux的时候,遇到了一些常见问题.题目,有些很简单,有些容易出错,本人水平有限,未免会出错,今天有时间,就将以前做的笔记,一一拿出来,写写blog. sizeof()和 strlen ...
- Supervisor服务开机自启动
要解决的问题 在机器上部署自己编写的服务时候,我们可以使用Supervisor作为进程检活工具,用来自动重启服务. 但是当机器重启后,Supervisor却不能自动重启,那么谁来解决这个问题呢? 答案 ...
- LVS本地实验环境搭建
文中实验需要使用以下软件: CentOS的镜像 Virtual Box GNS3 0.实验前的准备工作 0.1.修改yum源 为了方便安装软件,我们设置yum源为公司yum源 1.直接复制公司机器上的 ...
- Hadoop day1
Hadoop就是存储海量数据和分析海量数据的工具 1.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce ...
- uboot常用命令及其使用
环境变量设置 setenv 设置一个环境变量 # 格式:setenv key vlaue setenv bootdelay 5 # 设置uboot启动延时5s 删除一个环境变量 uboot对于一个没有 ...