正题

题目链接:https://loj.ac/p/3026


题目大意

给出\(n\)个点的一棵外向树,然后\(m\)个字符串和费用表示你每次可以花费这个费用覆盖路径字符串和给出字符串相等的路径,求覆盖所有边的最小花费(可以重复覆盖)

输出方案

\(1\leq n\leq 500,1\leq m\leq10^5,\sum |S|\leq 10^6\)


解题思路

注意到\(n\)很小,可以考虑枚举计算所有路径的最小花费,先构一个\(Trie\)即可处理这部分。

然后考虑怎么覆盖的问题,和[NOI2008] 志愿者招募类似的,我们可以通过边调走流来实现覆盖问题。

先原点向每一个叶子连流量为1的边,设\(siz_x\)表示\(x\)的子树中有多少个叶子那么\(x\)向\(fa_x\)连接流量为\(siz_x-1\)的边,然后根向汇点连流量为\(siz_1\)的边。

这样就保证了每条边都至少有一个流量被调走,但是需要考虑单链上的重复覆盖所以还需要每个点向儿子连无向流量的边。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=510,M=1e6+10;
struct node{
ll to,next,w;
}a[N];
ll n,m,t,tot,ans,MF,ls[N],siz[N],fa[N];
ll cnt,ch[M][26],cost[M],fail[M],mark[M];
queue<int> q;char s[M];
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
void Insert(char *s,ll val,ll num){
ll x=1,m=strlen(s);
for(ll i=0;i<m;i++){
ll c=s[i]-'a';
if(!ch[x][c])ch[x][c]=++cnt;
x=ch[x][c];
}
if(cost[x]>val)cost[x]=val,mark[x]=num;
return;
}
void GetFail(){
for(ll i=0;i<26;i++)q.push(ch[1][i]);
while(!q.empty()){
ll x=q.front();
for(ll i=0;i<26;i++){
if(!ch[x][i])ch[x][i]=ch[fail[x]][i];
else{
fail[ch[x][i]]=ch[fail[x]][i];
q.push(ch[x][i]);
}
}
}
return;
}
namespace NF{
struct node{
ll to,next,w,c,typ;
}a[N*N];
ll tot=1,s,t,ls[N],f[N],mf[N],pre[N];
bool v[N];
void addl(ll x,ll y,ll w,ll c,ll mk){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;//a[tot].typ=mk;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;a[tot].typ=mk;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
q.push(s);v[s]=1;f[s]=0;
mf[s]=f[0];mf[t]=0;
while(!q.empty()){
ll x=q.front();v[x]=0;q.pop();
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;
pre[y]=i;mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return mf[t];
}
void Updata(){
ll x=t;ans+=mf[t]*f[t];MF+=mf[t];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
void GetAns(){
while(SPFA())
Updata();
return;
}
void Print(){
ll sum=0;
for(ll i=2;i<=tot;i++)
if(a[i].typ)sum+=a[i].w;
printf("%lld\n",sum);
for(ll i=2;i<=tot;i++)
if(a[i].typ){
while(a[i].w)
printf("%lld %lld %lld\n",a[i^1].to,a[i].to,a[i].typ),a[i].w--;
}
}
}
void calc(ll x,ll p,ll s){
if(!p)return;
if(cost[p]<=1e9)
NF::addl(x,s,n,cost[p],mark[p]);
for(ll i=ls[x];i;i=a[i].next)
calc(a[i].to,ch[p][a[i].w],s);
return;
}
void solve(ll x){
siz[x]+=(!ls[x]);
if(!ls[x])NF::addl(NF::s,x,1,0,0);
calc(x,1,x);
for(ll i=ls[x];i;i=a[i].next){
NF::addl(x,a[i].to,n,0,0);
solve(a[i].to),siz[x]+=siz[a[i].to];
}
if(fa[x]&&siz[x]>1)
NF::addl(x,fa[x],siz[x]-1,0,0);
return;
}
signed main()
{
memset(cost,0x3f,sizeof(cost));
scanf("%lld%lld%lld",&n,&m,&t);
for(ll i=2;i<=n;i++){
ll x;char op[3];
scanf("%lld%s",&fa[i],op);
addl(fa[i],i,op[0]-'a');
}
cnt=1;
for(ll i=1;i<=m;i++){
ll c;
scanf("%lld%s",&c,s);
Insert(s,c,i);
}
NF::s=n+1;NF::t=n+2;
solve(1);
NF::addl(1,NF::t,siz[1],0,0);
NF::GetAns();
if(MF!=siz[1])return puts("-1")&0;
printf("%lld\n",ans);
if(t)NF::Print();
return 0;
}

Loj#3026-「ROIR 2018 Day1」管道监控【Trie,费用流】的更多相关文章

  1. 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)

    传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...

  2. 2018.10.15 loj#6013. 「网络流 24 题」负载平衡(费用流)

    传送门 费用流sb题. 直接从sss向每个点连边,容量为现有物品量. 然后从ttt向每个点连边,容量为最后库存量. 由于两个点之间可以互相任意运送物品,因此相邻的直接连infinfinf的边就行了. ...

  3. LOJ#2351. 「JOI 2018 Final」毒蛇越狱

    LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...

  4. 「BalkanOI 2018 Day1」Election

    「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]- ...

  5. 「BalkanOI 2018 Day1」Minmaxtree

    「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一 ...

  6. LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...

  7. 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)

    传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​, ...

  8. LOJ2321. 「清华集训 2017」无限之环【费用流】

    LINK 很好的一道网络里题 首先想插头DP的还是出门左转10分代码吧 然后考虑怎么网络流 首先要保证没有漏水 也就是说每个接口一定要有对应的接口 那么发现每个点只有可能和上下左右四个点产生联通关系 ...

  9. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

随机推荐

  1. zookeeper同一台服务器创建伪集群

    下载zk wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7 ...

  2. mac Charles抓包

    手机配置http代理 1.配置iPhone或Android 的wifi配置.首先保证Mac电脑和手机是在同一个局域网内. 2.设置手机wifi配置,在HTTP代理中选择手选代理,服务器填写Mac的IP ...

  3. JSON.stringify()还可以这么用

    最近做项目的时候遇到一个对象深拷贝的问题,网上看了下发现最为简便的方法是JSON.stringify(),比如你要深拷贝一个对象,可以这么做: var test={ a:"hello&quo ...

  4. Vue 插槽 slot的简单实用

  5. response中setCharacterEncoding和setContentType的区别

    package day08; import java.io.IOException; import javax.servlet.ServletException; import javax.servl ...

  6. 自己封装一个Object.freeze()方法

    1.遍历所有属性和方法 2.修改遍历到的属性的描述 3.Object.seal() Object.defineProperty(Object,'freezePolyfill',{ value:func ...

  7. eh-admin一套前后端一体的轻量级后台管理系统

    https://gitee.com/DawnYang/eh-admin 主要技术 后端技术:Spring Boot,Apache Shiro,MyBatis-Plus等: 前端技术:Jquery,La ...

  8. CSS样式下border的几种线型

    在用border的时候经常会忘记它有多少种线型以及各种线型的写法:每次都得从头开始,或是用到Google.百度之类的,有空整理了一下 (1)none (没有边框,无论边框宽度设为多大) (2)dott ...

  9. python 中最好用的身份证规则解析工具,地区码、性别、出生年月、身份证编码等快速校验!

    安装并导入依赖库 # pip install parseIdCard from parseIdCard import parseIdCard from pprint import pprint 地区码 ...

  10. 利用job提升马哈鱼数据血缘分析效率

    利用job提升马哈鱼数据血缘分析效率 一.Job基本知识 前面文章中已介绍马哈鱼的基本功能,其中一个是job,job其实是一个任务集合处理的概念,就是让用户通过job,可以一次递交所有需要处理的 SQ ...