P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】
正题
题目链接:https://www.luogu.com.cn/problem/P5540
题目大意
给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化
\]
的情况下最小化\(\sum_{e\in T}a_e\)
\(1\leq n\leq 200,1\leq m\leq 10^4\)
解题思路
这种带乘积的可以维护凸壳,对于一棵生成树\(T\)我们视为一个\((\sum_{e\in T}a_e,\sum_{e\in T}b_i)\)的点,这样我们打答案一定在下凸壳上。
可以用一种分治求凸壳的方法,我们先找出下凸壳的两个端点(\(x\)最小的和\(y\)最小的)记为\(A,B\),然后找到一个在\(A\)与\(B\)的连边下面的一个最凸的点\(C\)(可以视为最大化\(S_{\bigtriangleup ACB}\),这样\(C\)一定在凸壳上),然后分治下去做\(\vec{AC}\)和\(\vec{CB}\)。
考虑怎么求这个\(C\),就是最大化\(\vec{AC}\times \vec{CB}\)
\]
\]
然后就是相当于最小化\(x_C(y_B-y_A)+y_C(x_A-x_B)\),拿这个当边权跑就可以跑出\(C\)了。
然后时间复杂度据说是\(O(m\log m\sqrt{\ln n!})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=210,M=1e4+10;
struct node{
ll x,y,w,id;
}e[M];
struct point{
ll x,y;
point(ll xx=0,ll yy=0)
{x=xx;y=yy;return;}
}ans;
ll n,m,x[M],y[M],a[M],b[M],fa[N];
point operator-(point x,point y)
{return point(x.x-y.x,x.y-y.y);}
ll operator*(point x,point y)
{return x.x*y.y-x.y*y.x;}
bool cmp(node x,node y)
{return (x.w==y.w)?(a[x.id]<a[y.id]):(x.w<y.w);}
ll find(ll x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
point Kruskal(){
ll cnt=0;point res=0;
for(ll i=1;i<=n;i++)fa[i]=i;
sort(e+1,e+1+m,cmp);
for(ll i=1;i<=m;i++){
ll x=find(e[i].x),y=find(e[i].y);
if(x==y)continue;
fa[x]=y;cnt++;
res.x+=a[e[i].id];
res.y+=b[e[i].id];
if(cnt==n-1)break;
}
if(res.x*res.y<ans.x*ans.y)ans=res;
else if(res.x*res.y==ans.x*ans.y&&res.x<ans.x)
ans=res;
return res;
}
void solve(point A,point B){
for(ll i=1;i<=m;i++)
e[i]=(node){x[i],y[i],(B.x-A.x)*b[i]+(A.y-B.y)*a[i],i};
point C=Kruskal();
if((C-A)*(B-A)<=0)return;
solve(A,C);solve(C,B);
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++){
scanf("%lld%lld%lld%lld",&x[i],&y[i],&a[i],&b[i]);
x[i]++;y[i]++;
}
ans.x=ans.y=1e9;
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],a[i],i};
point A=Kruskal();
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],b[i],i};
point B=Kruskal();
solve(A,B);
printf("%lld %lld\n",ans.x,ans.y);
return 0;
}
P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】的更多相关文章
- 洛谷 P5540 - [BalkanOI2011] timeismoney | 最小乘积生成树(最小生成树)
洛谷题面传送门 大概是一个比较 trivial 的小 trick?学过了就不要忘了哦( 莫名奇妙地想到了 yyq 的"hot tea 不常有,做过了就不能再错过了" 首先看到这种二 ...
- bzoj2395[Balkan 2011]Timeismoney最小乘积生成树
所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...
- 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)
问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...
- bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...
- bzoj 2395 Timeismoney —— 最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p ...
- Luogu5540 最小乘积生成树
Luogu5540 最小乘积生成树 题目链接:洛谷 题目描述:对于一个\(n\)个点\(m\)条边的无向连通图,每条边有两个边权\(a_i,b_i\),求使\((\sum a_i)\times (\s ...
- HDU5697 刷题计划 dp+最小乘积生成树
分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...
- 【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)
今天考试的时候果然题目太难于是我就放弃了……转而学习了一下最小乘积生成树. 最小乘积生成树定义: (摘自网上一篇博文). 我们主要解决的问题就是当k = 2时,如何获得最小的权值乘积.我们注意到一张图 ...
随机推荐
- Walkthrough: Create and use your own Dynamic Link Library (C++)
参考网站:https://docs.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-librar ...
- windows笔记-在可执行文件或DLL的多个实例之间共享静态数据
全局数据和静态数据不能被同一个. exe或DLL文件的多个映像共享,这是个安全的默认设置.但是,在某些情况下,让一个. exe文件的多个映像共享一个变量的实例是非常有用和方便的. 每个. exe或DL ...
- vue 引入 leaflet1.4.0
安装leaflet cnpm install leaflet@~1.4.0 --save // 在main.js 中设置如下 //引入样式文件 import 'leaflet/dist/leaflet ...
- jsoup的Node类
一.简介 Node类直接继承Object,实现了Cloneable接口,它是一个抽象类,类声明:public abstract class Node extends Object implements ...
- WPF 中TextBox 增加输入检测,错误提示
先来总结下实现错误提示功能的几个要点 1:binding 的ValidationRules 2 :Validation.ErrorTemplate 首先我们在界面添加一个TextBox, Text绑定 ...
- 面试官问我MySQL索引,我
面试官:我看你简历上写了MySQL,对MySQL InnoDB引擎的索引了解吗? 候选者:嗯啊,使用索引可以加快查询速度,其实上就是将无序的数据变成有序(有序就能加快检索速度) 候选者:在InnoDB ...
- 30 道 Vue 面试题,内含详细讲解(涵盖入门到精通,自测 Vue 掌握程度)
前言 本文以前端面试官的角度出发,对 Vue 框架中一些重要的特性.框架的原理以问题的形式进行整理汇总,意在帮助作者及读者自测下 Vue 掌握的程度.本文章节结构以从易到难进行组织,建议读者按章节顺序 ...
- 前端性能优化(四)——网页加载更快的N种方式
网站前端的用户体验,决定了用户是否想要继续使用网站以及网站的其他功能,网站的用户体验佳,可留住更多的用户.除此之外,前端优化得好,还可以为企业节约成本.那么我们应该如何对我们前端的页面进行性能优化呢? ...
- centos7系统上pgsql的一些报错解决方法
1.2021-07-15 # 问题: 登录时服务器拒绝连接 psql -h 192.168.1.112 # 解决方法:修改配置文件 pg_hba.conf ,将该主机加进白名单 vi pg_hba.c ...
- Zookeeper:进大厂不得不学的分布式协同利器!
大家好,我是冰河~~ 最近,有很多小伙伴让我更新一些Zookeeper的文章,正好也趁着清明假期把之前自己工作过程当中总结的Zookeeper知识点梳理了一番,打算写一个[精通Zookeeper系列] ...