buu [BJDCTF2020]easyrsa
下载附件是一个py文件,打开之后,发现是常规的rsa,不过有几个函数不知道。
这里记录一下,
Fraction(a,b) 相当于 a/b
Derivative(f(x),x) : 当x='x’时,f(x)的导数值
from Crypto.Util.number import getPrime,bytes_to_long
from sympy import Derivative
from fractions import Fraction
from secret import flag
p=getPrime(1024)
q=getPrime(1024)
e=65537
n=p*q
z=Fraction(1,Derivative(arctan(p),p))-Fraction(1,Derivative(arth(q),q))
m=bytes_to_long(flag)
c=pow(m,e,n)
print(c,z,n)
'''
output:
7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441
'''
那这里Derivative(artan§,p)相当于是1/1+p^2,而另一边是1/1-p ^2 ,再倒一下,那么这个z实际上就是p ^ 2+q ^2
n又是p*q
这里写脚本用到一些gmpy2的库函数,这里也记录一下
Encoding=UTF-8
import gmpy2
# gmpy2.mpz(x)
# 初始化一个大整数x
gmpy2.mpfr(x)
# 初始化一个高精度浮点数x
C = gmpy2.powmod(M,e,n)
# 幂取模,结果是 C = (M^e) mod n
d = gmpy2.invert(e,n) # 求逆元,de = 1 mod n
gmpy2.is_prime(n) # 判断n是不是素数
gmpy2.gcd(a,b) # 欧几里得算法
gmpy2.gcdext(a,b) # 扩展欧几里得算法
gmpy2.iroot(x,n) # x开n次根
from Crypto.Util.number import getPrime,bytes_to_long
from sympy import Derivative
from fractions import Fraction
from gmpy2 import *
def num2str(n):
tmp=str(hex(n))[2:]
if len(tmp)%2==0:
pass
else:
tmp='0'+tmp
s=''
for i in range(0,len(tmp),2):
temp=tmp[i]+tmp[i+1]
s+=chr(int(temp,16))
return s
c=7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
z=32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
n=15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441
p_plus_q=iroot(z+2*n,2)[0]
p_sub_q=iroot(z-2*n,2)[0]
e=65537
p=(p_plus_q+p_sub_q)//2
q=(p_plus_q-p_sub_q)//2
d=invert(e,((p-1)*(q-1)))
m=pow(c,int(d),n)
print(num2str(m))
buu [BJDCTF2020]easyrsa的更多相关文章
- rsa special
[ReSnAd] -- iqmp ipmq e,c,\(\phi(n)\) 题目: class Key: PRIVATE_INFO = ['P', 'Q', 'D', 'DmP1', 'DmQ1'] ...
- 解决centos 7.5安装openvpn,mirrors.163.com提示没有可用软件包openvpn、easy-rsa问题
提示: yum install openvpn 已加载插件:fastestmirror Loading mirror speeds from cached hostfile * base: mirro ...
- centos 7部署openvpn easy-rsa 3.0部署方法
yum install openvpn easy-rsa openssl-devel mkdir -p /etc/openvpn/easy-rsa/cp -p /usr/share/doc/easy- ...
- openvpn之EasyRSA配置篇
cd EasyRSA-2.2.2 vi vars #红色加粗的表示是我们需要修改的,其它的保持默认就可以 export EASY_RSA="`pwd`" export OPENSS ...
- Easy-RSA 3快速入门自述文件
Easy-RSA 3快速入门自述文件 这是使用Easy-RSA版本3的快速入门指南.运行./easyrsa -h可以找到有关使用和特定命令的详细帮助.可以在doc /目录中找到其他文档. 如果您从Ea ...
- Easy-RSA 3 Quickstart README
Easy-RSA 3 Quickstart README This is a quickstart guide to using Easy-RSA version 3. Detailed help o ...
- Buu刷题
前言 希望自己能够更加的努力,希望通过多刷大赛题来提高自己的知识面.(ง •_•)ง easy_tornado 进入题目 看到render就感觉可能是模板注入的东西 hints.txt给出提示,可以看 ...
- BUU刷题01
[安洵杯 2019]easy_serialize_php 直接给了源代码 <?php $function = @$_GET['f']; function filter($img){ $filte ...
- [BJDCTF2020]EzPHP
[BJDCTF2020]EzPHP 解码:http://794983a5-f5dc-4a13-bc0b-ca7140ba23f3.node3.buuoj.cn/1nD3x.php 源代码: <? ...
随机推荐
- Go语言常用命令
查看可用命令 直接在终端中输入 go help 即可显示所有的 go 命令以及相应命令功能简介,主要有下面这些: ·build: 编译包和依赖 ·clean: 移除对象文件 ·doc: 显示包或者符号 ...
- IDEA 通过ctrl+滚轮缩放字体大小
能用图解决的问题,尽量简单粗暴通俗易懂 1.第一种方式 2.第二种方式
- App元素定位三种方法
来自博客: http://testingpai.com/article/1595507262082 以下方法操作前必须确保有手机设备连入电脑,检测是否有手机连入命令 adb devices 第一种:A ...
- App自动化测试之Appium环境安装(涉及雷电模拟器和真机)
1.安装Microsoft .NET Framework 4.5 及以上版本 2.安装Appium 官方网站地址:http://appium.io/ 我装了1.17.0版本 3.安装JDK 1.8及以 ...
- DLPack构建跨框架的深度学习编译器
DLPack构建跨框架的深度学习编译器 Tensorflow,PyTorch和ApacheMxNet等深度学习框架提供了一个功能强大的工具包,可用于快速进行原型设计和部署深度学习模型.易用性通常是以碎 ...
- TensorFlowMNIST数据集逻辑回归处理
TensorFlow逻辑回归处理MNIST数据集 本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https ...
- 使用NVIDIA GRID vPC支持视频会议和算力工具
随着2020年的发展,远程工作解决方案已成为许多人的新常态.企业正在寻找行之有效的解决方案,如虚拟桌面基础设施(VDI),以使他们的团队能够在任何地方安全地工作.然而,最新的算力和视频会议应用程序需要 ...
- VB 老旧版本维护系列---兜兜转转有点晕:从服务器通过URL不中转保存的下载
从服务器通过URL不中转保存的下载 首先引用System.dll 然后新开一个页面,空的,在后台Page_Load方法里写 Dim docPath As String ="" ...
- 计算机网络-ip分类
本网络--网络号全是0(0000 0000)的IP地址是保留地址,意思是"本网络". 环回地址--网络号是127(0111 1111)的IP地址也是保留地址,作为本地环回软件测试. ...
- HashMap底层实现原理及面试常见问题
HashMap底层源码分析 1.HashMap底层采用的存储结构 1.在JDK1.7及之前采用的存储结构是数组+链表 2.到了JDK1.8之后采用的是数组+链表+红黑树 2.HashMap实现的原理 ...