计算机视觉与模式识别代码合集第二版one
Topic |
Name |
Reference |
code |
Feature Detection, Feature Extraction, and Action Recognition |
Space-Time Interest Points (STIP) |
I. Laptev, On Space-Time Interest Points, IJCV, 2005 and I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005 |
|
Action Recognition |
3D Gradients (HOG3D) |
A. Klaser, M. Marszaek, and C. Schmid, BMVC, 2008. |
|
Action Recognition |
Dense Trajectories Video Description |
H. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011 |
|
Alpha Matting |
Spectral Matting |
A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008 |
|
Alpha Matting |
Shared Matting |
ESL Gastal and MM Oliveira, Computer Graphics Forum, 2010 |
|
Alpha Matting |
Bayesian Matting |
YY Chuang, B. Curless, DH Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001 |
|
Alpha Matting |
Closed Form Matting |
A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008. |
|
Alpha Matting |
Learning-based Matting |
Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009 |
|
Camera Calibration |
Camera Calibration Toolbox for Matlab |
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.html |
|
Camera Calibration |
EasyCamCalib |
J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009 |
|
Camera Calibration |
Epipolar Geometry Toolbox |
GL Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005 |
|
Clustering |
Spectral Clustering - UW Project |
||
Clustering |
Spectral Clustering - UCSD Project |
||
Clustering |
Self-Tuning Spectral Clustering |
||
Clustering |
K-Means - Oxford Code |
||
Clustering |
K-Means - VLFeat |
||
Common Visual Pattern Discovery |
Sketching the Common |
S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010 |
|
Common Visual Pattern Discovery |
Common Visual Pattern Discovery via Spatially Coherent Correspondences |
H. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010 |
|
Density Estimation |
Kernel Density Estimation Toolbox |
||
Depth Sensor |
Kinect SDK |
http://www.microsoft.com/en-us/kinectforwindows/ |
|
Dimension Reduction |
ISOMAP |
||
Dimension Reduction |
LLE |
||
Dimension Reduction |
Laplacian Eigenmaps |
||
Dimension Reduction |
Diffusion maps |
||
Dimension Reduction |
Dimensionality Reduction Toolbox |
||
Distance Metric Learning |
Matlab Toolkit for Distance Metric Learning |
||
Distance Transformation |
Distance Transforms of Sampled Functions |
||
Feature Detection |
Canny Edge Detection |
J. Canny, A Computational Approach To Edge Detection, PAMI, 1986 |
|
Feature Detection |
FAST Corner Detection |
E. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006 |
|
Feature Detection |
Edge Foci Interest Points |
L. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011 |
|
Feature Detection |
Boundary Preserving Dense Local Regions |
J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011 |
|
Feature Extraction |
BRIEF: Binary Robust Independent Elementary Features |
M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010 |
|
Feature Detection andFeature Extraction |
Scale-invariant feature transform (SIFT) - VLFeat |
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. |
|
Feature Detection andFeature Extraction |
Scale-invariant feature transform (SIFT) - Demo Software |
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. |
|
Feature Extraction |
Global and Efficient Self-Similarity |
T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010and T. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010 |
|
Feature Detection andFeature Extraction |
Affine-SIFT |
JM Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009 |
|
Feature Detection andFeature Extraction |
Geometric Blur |
AC Berg, TL Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005 |
|
Feature Extraction |
PCA-SIFT |
Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004 |
|
Feature Detection andFeature Extraction |
Scale-invariant feature transform (SIFT) - Library |
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. |
|
Feature Detection andFeature Extraction |
Groups of Adjacent Contour Segments |
V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007 |
|
Feature Detection andFeature Extraction |
Speeded Up Robust Feature (SURF) - Matlab Wrapper |
H. Bay, T. Tuytelaars and LV Gool SURF: Speeded Up Robust Features, ECCV, 2006 |
|
Feature Extraction |
Shape Context |
S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002 |
|
Feature Detection andFeature Extraction |
Speeded Up Robust Feature (SURF) - Open SURF |
H. Bay, T. Tuytelaars and LV Gool SURF: Speeded Up Robust Features, ECCV, 2006 |
|
Feature Detection andFeature Extraction |
Maximally stable extremal regions (MSER) |
J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002 |
|
Feature Extraction |
GIST Descriptor |
A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001 |
|
Feature Detection andFeature Extraction |
Color Descriptor |
KEA van de Sande, T. Gevers and Cees GM Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010 |
|
Feature Extraction |
Local Self-Similarity Descriptor |
E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007 |
|
|
|
|
Feature Detection andFeature Extraction |
Maximally stable extremal regions (MSER) - VLFeat |
J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust |
|
Feature Extraction |
Pyramids of Histograms of Oriented Gradients (PHOG) |
A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a |
|
Feature Detection andFeature Extraction |
Affine Covariant Features |
T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature |
|
Feature Extraction |
sRD-SIFT |
M. Lourenco, JP Barreto and A. Malti, Feature Detection and |
|
Graph Matching |
Reweighted Random Walks for Graph Matching |
M. Cho, J. Lee, and KM Lee, Reweighted Random Walks for Graph |
|
Graph Matching |
Hyper-graph Matching via Reweighted Random Walks |
J. Lee, M. Cho, KM Lee. "Hyper-graph Matching via |
|
Illumination, Reflectance, and Shadow |
Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse |
JF. Lalonde, AA Efros, SG Narasimhan, Webcam Clip |
|
Illumination, Reflectance, and Shadow |
Ground shadow detection |
J.-F. Lalonde, AA Efros, SG Narasimhan, Detecting |
|
Illumination, Reflectance, and Shadow |
Shadow Detection using Paired Region |
R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and |
|
Illumination, Reflectance, and Shadow |
Real-time Specular Highlight Removal |
Q. Yang, S. Wang and N. Ahuja, Real-time Specular Highlight Removal |
|
Illumination, Reflectance, and Shadow |
Estimating Natural Illumination from a Single Outdoor |
JF. Lalonde, AA Efros, SG Narasimhan, Estimating |
|
Illumination, Reflectance, and Shadow |
What Does the Sky Tell Us About the Camera? |
JF. Lalonde, SG Narasimhan, AA Efros, What Does |
|
Image Classification |
Locality-constrained Linear Coding |
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. |
|
Image Classification |
Sparse Coding for Image Classification |
J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching |
|
Image Classification |
Texture Classification |
M. Varma and A. Zisserman, A statistical approach to texture |
|
Feature Matching andImage Classification |
The Pyramid Match: Efficient Matching for Retrieval and |
K. Grauman and T. Darrell. The Pyramid Match |
|
Image Classification |
Spatial Pyramid Matching |
S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags |
|
Image Deblurring |
Radon Transform |
TS Cho, S. Paris, BKP Horn, WT Freeman, Blur kernel estimation |
|
Image Deblurring |
Analyzing spatially varying blur |
A. Chakrabarti, T. Zickler, and WT Freeman, Analyzing |
|
Image Denoising,Image Super-resolution, and Image |
Learning Models of Natural Image Patches |
D. Zoran and Y. Weiss, From Learning Models of Natural Image |
|
Image Deblurring |
Non-blind deblurring (and blind denoising) with integrated noise |
U. Schmidt, K. Schelten, and S. Roth. Bayesian |
|
Image Deblurring |
Eficient Marginal Likelihood Optimization in Blind |
A. Levin, Y. Weiss, F. Durand, WT |
|
Image Deblurring |
Richardson-Lucy Deblurring for Scenes under Projective Motion |
Y.-W. Tai, P. Tan, MS Brown: Richardson-Lucy |
|
Image Denoising |
Sparsity-based Image Denoising |
W. Dong, X. Li, L. Zhang and G. Shi, Sparsity-based Image Denoising |
|
Image Denoising |
K-SVD |
||
Image Denoising |
Clustering-based Denoising |
P. Chatterjee and P. Milanfar, Clustering-based Denoising with |
|
Image Denoising |
BLS-GSM |
||
Image Denoising |
Field of Experts |
||
Image Denoising |
Non-local Means |
||
Image Denoising |
What makes a good model of natural images ? |
Y. Weiss and WT Freeman, CVPR 2007 |
|
Image Denoising |
BM3D |
||
Image Denoising |
Kernel Regressions |
||
Image Denoising |
Gaussian Field of Experts |
||
Image Denoising |
Nonlocal means with cluster trees |
T. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for |
|
Image Filtering |
GradientShop |
P. Bhat, CL Zitnick, M. Cohen, B. Curless, and J. Kim, |
|
Image Filtering |
Weighted Least Squares Filter |
Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-Preserving |
|
Image Filtering |
Real-time O(1) Bilateral Filtering |
Q. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) |
|
Image Filtering |
Guided Image Filtering |
K. He, J. Sun, X. Tang, Guided Image Filtering, ECCV |
|
Image Filtering |
Fast Bilateral Filter |
S. Paris and F. Durand, A Fast Approximation of the Bilateral |
|
Image Filtering |
Image smoothing via L0 Gradient Minimization |
L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient |
|
Image Filtering |
Domain Transformation |
E. Gastal, M. Oliveira, Domain Transform for Edge-Aware Image and |
|
Image Processing andImage Filtering |
Piotr's Image & Video Matlab Toolbox |
Piotr Dollar, Piotr's Image & Video Matlab Toolbox, |
|
Image Filtering |
Local Laplacian Filters |
S. Paris, S. Hasinoff, J. Kautz, Local Laplacian Filters: |
|
Image Filtering |
SVM for Edge-Preserving Filtering |
Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering, |
|
Image Filtering |
Anisotropic Diffusion |
P. Perona and J. Malik, Scale-space and edge detection using |
计算机视觉与模式识别代码合集第二版one的更多相关文章
- 计算机视觉与模式识别代码合集第二版two
Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, ...
- 计算机视觉与模式识别代码合集第二版three
计算机视觉与模式识别代码合集第二版three Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow ...
- [ZZ] UIUC同学Jia-Bin Huang收集的计算机视觉代码合集
UIUC同学Jia-Bin Huang收集的计算机视觉代码合集 http://blog.sina.com.cn/s/blog_4a1853330100zwgm.htmlv UIUC的Jia-Bin H ...
- git常用代码合集
git常用代码合集 1. Git init:初始化一个仓库 2. Git add 文件名称:添加文件到Git暂存区 3. Git commit -m “message”:将Git暂存区的代码提交到Gi ...
- WooCommerce代码合集整理
本文整理了一些WooCommerce代码合集,方便查阅和使用,更是为了理清思路,提高自己.以下WooCommerce简称WC,代码放在主题的functions.php中即可. 修改首页和分类页面每页产 ...
- 【转载】GitHub 标星 1.2w+,超全 Python 常用代码合集,值得收藏!
本文转自逆袭的二胖,作者二胖 今天给大家介绍一个由一个国外小哥用好几年时间维护的 Python 代码合集.简单来说就是,这个程序员小哥在几年前开始保存自己写过的 Python 代码,同时把一些自己比较 ...
- UIUC同学Jia-Bin Huang收集的计算机视觉代码合集
转自:http://blog.sina.com.cn/s/blog_631a4cc40100wrvz.html UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: ...
- 常用的js代码合集
!function(util){ window.Utils = util(); }( function(){ //document_event_attributes var DEA = "d ...
- vs2010下载Microsoft Visual Studio 2010 Express(vs2010中文版下载)速成官方合集正式版
http://www.xiazaiba.com/html/1832.html VB.NET 2010 Express: 2KQT8-HV27P-GTTV9-2WBVV-M7X96VC++ 2010 E ...
随机推荐
- 【手打】LZW编码的C/C++实现
LZW编码通过建立一个字符串表,用较短的代码来表示较长的字符串来实现压缩. LZW压缩算法是Unisys的专利,有效期到2003年,所以相关算法大多也已过期. 本代码只完毕了LZW的编码与解码算法功能 ...
- HTML简单介绍及举例
超文本标记语言(Hyper Text Markup Language,简称HTML)是为"网页创建和其他可在网页浏览器中看到的信息"设计的一种标记语言.HTML被用来结构化信息,也 ...
- C# - 接口的继承
代码: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Syst ...
- qingshow “不积跬步无以至千里,不积小流无以成江海”。--荀子《劝学篇》 用tomcat+花生壳搭建自己的web服务器+域名(参考)
链接地址:http://www.blogjava.net/qingshow/archive/2010/01/17/309846.html 用tomcat搭建web服务器 目标:免费拥有自己的网站及域名 ...
- iTunes Store:隐藏和取消隐藏已购项目
使用 Mac 或 PC 上的 iTunes 来隐藏或取消隐藏已购项目. 如何隐藏已购项目 在 Mac 或 PC 上打开 iTunes. 从 Store 菜单中,选取商店 > 登录,然后输入您的 ...
- 基于visual Studio2013解决C语言竞赛题之1049抓牌排序
题目 解决代码及点评 /* 功能:插入排序.许多玩牌的人是以这样的方式来对他们手中的牌进行排序的: 设手中原有3张牌已排好序,抓1张新牌,若这张新牌的次序在原来的第2张牌之后,第 3 ...
- VS2008SP1中CDialogEx的使用问题及解决
系统环境:Windows 7软件环境:Visual Studio 2008 SP1本次目的:建立一个CDialogEx的对话框 我们知道在VS2008SP1引进了BCG第三方控件,可以使MFC界面编程 ...
- bottle-session 0.3 : Python Package Index
bottle-session 0.3 : Python Package Index bottle-session 0.3
- HTML - HTML Commonly Used Character Entities
HTML Entities Some characters are reserved in HTML. It is not possible to use the less than (<) o ...
- 原码、反码、补码和移码事实上非常easy
近期在备战软考,复习到计算机组成原理的时候,看到书中关于原码.反码.补码和移码的定义例如以下(n是机器字长): 原码: 反码: 补码: 移码: 看完这些定义以后,我的脑袋瞬间膨胀到原来的二倍!这样变态 ...