POJ3071-Football(概率DP+滚动数组)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2769 | Accepted: 1413 |
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared
the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value
on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i.
The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double
data type instead
of float
.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
简单的概率题:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 1 << 8;
double p[maxn][maxn];
int n,all;
double dp[2][maxn];
int main(){ while(cin >> n&&n!=-1){
all = (1 << n);
for(int i = 1; i <= all; i++)
dp[1][i] = 1;
for(int i = 1; i <= all; i++)
for(int j = 1; j <= all; j++)
cin >> p[i][j];
for(int i = 0; i < n; i++){
int d = 1<<i;
for(int k = 1; k <= all; k++){
dp[0][k] = dp[1][k];
dp[1][k] = 0;
} int sta=1,ed=sta+d;
while(ed <= all){
for(int k = sta; k < ed; k++){
for(int a = ed; a < ed+d; a++){
dp[1][k] += dp[0][k]*dp[0][a]*p[k][a];
dp[1][a] += dp[0][a]*dp[0][k]*p[a][k];
}
}
sta += 2*d;
ed = sta+d;
}
}
double ans = dp[1][1];
int idx = 1;
for(int i = 2; i <= all; i++){
if(dp[1][i] > ans){
ans = dp[1][i];
idx = i;
}
}
cout<<idx<<endl;
}
return 0;
}
POJ3071-Football(概率DP+滚动数组)的更多相关文章
- hdu 4576(概率dp+滚动数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 思路:由于每次从某一位置到达另一位置的概率为0.5,因此我们用dp[i][j]表示第i次操作落在 ...
- Hello 2019 D 素因子贡献法计算期望 + 概率dp + 滚动数组
https://codeforces.com/contest/1097/problem/D 题意 给你一个n和k,问n经过k次操作之后留下的n的期望,每次操作n随机变成一个n的因数 题解 概率dp计算 ...
- HDU - 4576 Robot(概率dp+滚动数组)
题意:所有的格子围成一个圈,标号为1~n,若从格子1出发,每次指令告知行走的步数,但可能逆时针也可能顺时针走,概率都是1/2,那么问走了m次指令后位于格子l~r(1≤l≤r≤n)的概率. 分析: 1. ...
- POJ3071:Football(概率DP)
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- [poj3071]football概率dp
题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] + = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...
- POJ3071 Football 概率DP 简单
http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- HDU 5119 Happy Matt Friends (背包DP + 滚动数组)
题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...
随机推荐
- IOS开发之UILabel动态高度设置方法
项目中有这样的需求,要显示一本书的概述,默认显示2行,点击展开按钮,显示全部,点击收回,有显示2行. 开始的时候按钮事件中,可能写的是这样一段代码: if (isExpand) { [lblBrief ...
- BZOJ 1112: [POI2008]砖块Klo1112( BST )
枚举每个长度为k的区间, 然后用平衡树找中位数进行判断, 时间复杂度O(nlogn). 早上起来精神状态不太好...连平衡树都不太会写了...果断去看了会儿番然后就A了哈哈哈 ------------ ...
- 基于visual Studio2013解决C语言竞赛题之1032平方和
题目 解决代码及点评 /* 编程序将一个正整数写成其它两个正整数的平方和,若不能成立时输出"NO".例如 5 = 1^2 + 2^2 , 25 ...
- Android手势识别 Camera 预览界面上显示文字 布局注意事项(merge布局)
通常在Surfaceview作为预览视频帧的载体,有时需在上面显示提示文字.曾经我弄的都好好的.今天忽然发现叠加的TextView不管咋弄都出不来文字了,跟Surfaceview一起放在FrameLa ...
- Spring MVC程序
Spring MVC程序(IDEA开发环境) 回顾Java平台上Web开发历程来看,从Servlet出现开始,到JSP繁盛一时,然后是Servlet+JSP时代,最后演化为现在Web开发框架盛行的 ...
- 菜单组件——axure线框图部件库介绍
软件类的教程,我写不出长篇大论,这里面的都是基础的操作,希望初学者,根据一个功能演示,可以自己测试其他功能菜单的效果! Axure自带的菜单组件,我几乎没有用到过,做菜单导航,我第一时间想到的还是矩形 ...
- 11586 - Train Tracks
Problem J: Train Tracks Andy loves his set of wooden trains and railroad tracks. Each day, Daddy has ...
- python - Django: Converting an entire set of a Model's objects into a single dictionary - Stack Overflow
python - Django: Converting an entire set of a Model's objects into a single dictionary - Stack Over ...
- ASP.NET - cookie
下面是写cookie HttpCookie cookie = new HttpCookie("Info");//定义cookie对象以及名为Info的项 DateTime dt ...
- 构建基于Jenkins + Github的持续集成环境
搭建持续集成首先要了解什么是持续集成,带着明确的目标去搭建持续集成环境才能让我们少走很多弯路.持续集成(Continuous integration)简称CI,是一种软件开发的实践,可以让团队在持续集 ...