POJ3071-Football(概率DP+滚动数组)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2769 | Accepted: 1413 |
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared
the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value
on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i.
The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead
of float.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
简单的概率题:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 1 << 8;
double p[maxn][maxn];
int n,all;
double dp[2][maxn];
int main(){ while(cin >> n&&n!=-1){
all = (1 << n);
for(int i = 1; i <= all; i++)
dp[1][i] = 1;
for(int i = 1; i <= all; i++)
for(int j = 1; j <= all; j++)
cin >> p[i][j];
for(int i = 0; i < n; i++){
int d = 1<<i;
for(int k = 1; k <= all; k++){
dp[0][k] = dp[1][k];
dp[1][k] = 0;
} int sta=1,ed=sta+d;
while(ed <= all){
for(int k = sta; k < ed; k++){
for(int a = ed; a < ed+d; a++){
dp[1][k] += dp[0][k]*dp[0][a]*p[k][a];
dp[1][a] += dp[0][a]*dp[0][k]*p[a][k];
}
}
sta += 2*d;
ed = sta+d;
}
}
double ans = dp[1][1];
int idx = 1;
for(int i = 2; i <= all; i++){
if(dp[1][i] > ans){
ans = dp[1][i];
idx = i;
}
}
cout<<idx<<endl;
}
return 0;
}
POJ3071-Football(概率DP+滚动数组)的更多相关文章
- hdu 4576(概率dp+滚动数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 思路:由于每次从某一位置到达另一位置的概率为0.5,因此我们用dp[i][j]表示第i次操作落在 ...
- Hello 2019 D 素因子贡献法计算期望 + 概率dp + 滚动数组
https://codeforces.com/contest/1097/problem/D 题意 给你一个n和k,问n经过k次操作之后留下的n的期望,每次操作n随机变成一个n的因数 题解 概率dp计算 ...
- HDU - 4576 Robot(概率dp+滚动数组)
题意:所有的格子围成一个圈,标号为1~n,若从格子1出发,每次指令告知行走的步数,但可能逆时针也可能顺时针走,概率都是1/2,那么问走了m次指令后位于格子l~r(1≤l≤r≤n)的概率. 分析: 1. ...
- POJ3071:Football(概率DP)
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- [poj3071]football概率dp
题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] + = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...
- POJ3071 Football 概率DP 简单
http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- HDU 5119 Happy Matt Friends (背包DP + 滚动数组)
题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...
随机推荐
- windows api 梳理
PathMatchSpec Function Searches a string using a Microsoft MS-DOS wild card match type. Syntax BOOL ...
- Tomcat设置成NIO时,使用的线程池
设置成NIO时, <Connector port="8088" protocol="org.apache.coyote.http11.Http11NioProtoc ...
- Response.AppendCookie
//写入 protected void Button2_Click(object sender, EventArgs e) { HttpCookie cookie=new HttpCookie(&qu ...
- CLR和.Net对象
CLR和.Net对象生存周期 前言 1. 基础概念明晰* 1.1 公告语言运行时* 1.2 托管模块* 1.3 对象和类型* 1.4 垃圾回收器 2. 垃圾回收模型* 2.1 为什么需要垃圾回收* 2 ...
- QtWebkit中如何将网页内容转为图片
原地址:http://www.cnblogs.com/baizx/archive/2010/07/31/1789573.html 如何将webkit中的渲染结果也就是网页画面转换为图片 用抓图软件 ...
- Qt显示调用vs中的dll
网上看到很多文章写调用vc的dll,但我尝试了总是出问题,下面结合参考别人的文章,实现了Qt显示调用vs中c接口的dll. 具体直接上代码: vs中的代码: TMax.h: #ifdef TMAX # ...
- Linux下SSH Session复制
羡慕Windows下secureCRT的Session Copy功能,一直在寻找Linux下类似的软件,殊不知SSH本身就支持此功能. 特别感谢阿干同学的邮件分享. 详细方法 ? 1 2 3 4 Li ...
- 高性能JavaScript模板引擎原理解析
随着 web 发展,前端应用变得越来越复杂,基于后端的 javascript(Node.js) 也开始崭露头角,此时 javascript 被寄予了更大的期望,与此同时 javascript MVC ...
- 基于visual Studio2013解决C语言竞赛题之1087数字变换
题目 解决代码及点评 /************************************************************************/ /* ...
- Makefile自动生成工具-----autotools的使用(详细)
相信每个学习Linux的人都知道Makefile,这是一个很有用的东西,但是编写它是比较复杂,今天介绍一个它的自动生成工具,autotools的使用.很多GNULinux的的软件都是用它生成Makef ...