Football
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2769   Accepted: 1413

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared
the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value
on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i.
The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead
of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2
简单的概率题:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 1 << 8;
double p[maxn][maxn];
int n,all;
double dp[2][maxn];
int main(){ while(cin >> n&&n!=-1){
all = (1 << n);
for(int i = 1; i <= all; i++)
dp[1][i] = 1;
for(int i = 1; i <= all; i++)
for(int j = 1; j <= all; j++)
cin >> p[i][j];
for(int i = 0; i < n; i++){
int d = 1<<i;
for(int k = 1; k <= all; k++){
dp[0][k] = dp[1][k];
dp[1][k] = 0;
} int sta=1,ed=sta+d;
while(ed <= all){
for(int k = sta; k < ed; k++){
for(int a = ed; a < ed+d; a++){
dp[1][k] += dp[0][k]*dp[0][a]*p[k][a];
dp[1][a] += dp[0][a]*dp[0][k]*p[a][k];
}
}
sta += 2*d;
ed = sta+d;
}
}
double ans = dp[1][1];
int idx = 1;
for(int i = 2; i <= all; i++){
if(dp[1][i] > ans){
ans = dp[1][i];
idx = i;
}
}
cout<<idx<<endl;
}
return 0;
}

POJ3071-Football(概率DP+滚动数组)的更多相关文章

  1. hdu 4576(概率dp+滚动数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 思路:由于每次从某一位置到达另一位置的概率为0.5,因此我们用dp[i][j]表示第i次操作落在 ...

  2. Hello 2019 D 素因子贡献法计算期望 + 概率dp + 滚动数组

    https://codeforces.com/contest/1097/problem/D 题意 给你一个n和k,问n经过k次操作之后留下的n的期望,每次操作n随机变成一个n的因数 题解 概率dp计算 ...

  3. HDU - 4576 Robot(概率dp+滚动数组)

    题意:所有的格子围成一个圈,标号为1~n,若从格子1出发,每次指令告知行走的步数,但可能逆时针也可能顺时针走,概率都是1/2,那么问走了m次指令后位于格子l~r(1≤l≤r≤n)的概率. 分析: 1. ...

  4. POJ3071:Football(概率DP)

    Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...

  5. [poj3071]football概率dp

    题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] +  = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...

  6. POJ3071 Football 概率DP 简单

    http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...

  7. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  8. POJ 3666 Making the Grade (DP滚动数组)

    题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...

  9. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

随机推荐

  1. ajax跨域请求--jsonp实例

    ajax请求代码: //区域事件选择配送点 function changeDistrict(value){ if(value == 0){ $('#transport_node').empty(); ...

  2. zepto.js介绍(持续更新)

    前言: zepto是一个简化版的jQuery,主要针对移动端开发. 简化了jQuery里很多的浏览器兼容性代码,jQuery的很多方法都被拿掉了(eg:slideUp). WP设备兼容性很差. 官方链 ...

  3. linux 解决Ubuntu编译内核uImage出现问题“mkimage” command not found - U-Boot images will not be built问题

    解决Ubuntu编译内核uImage出现问题“mkimage” command not found - U-Boot images will not be built问题 http://www.lin ...

  4. Microsoft Visual Studio International Pack 1.0 SR1--关于汉字转拼音

    Microsoft Visual Studio International Pack 1.0 SR1————微软的一个类库 地址:http://www.microsoft.com/zh-cn/down ...

  5. java调用C#的dll

    链接地址:http://www.cnblogs.com/yinhaiming/articles/1712463.html .net产生的比java晚,其类库的封装在某些方面也比java更优秀,更全面. ...

  6. 重操JS旧业第二弹:数据类型与类型转换

    一 数据类型 1 js中的数据类型 1.1 数据类型列举 1)number类型 2)boolean类型 3)string类型 4)对象类型 5)函数类型 6)undefined类型 1.2 数据类型获 ...

  7. Qt MinGW 使用联合编译IncrediBuild

    联合编译工具IncrediBuild提供了接口,以使得可以使用网格来处理各种任务,而不仅仅是VS的联合编译,文档地址:http://www.incredibuild.com/webhelp/xge_h ...

  8. hdu1087Super Jumping! Jumping! Jumping!(最大递增序列和)

    题意:棋牌游戏如今,一种被称为“超级跳!跳!跳!“HDU是非常流行的.也许你是个好孩子,这个游戏知之甚少,所以我介绍给你吧. 可以玩游戏由两个或两个以上的球员 .它由一个棋盘(棋盘)和一些棋子(棋子) ...

  9. 简单的javascript抽奖程序

    <html>  <head>   <title>手机号码抽奖程序</title>   <script>    //声明一个数组装住号码,可根 ...

  10. 9、Cocos2dx 3.0游戏开发三查找值小工厂方法模式和对象

    重开发人员的劳动成果,转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/27704153 工厂方法模式 工厂方法是程序设计中一个 ...