文件的内容例如以下所看到的:

5

45

8

876

6

45

要求最后的输出格式:

1    5

2    6

3    8

4    45

5    45

5    876

首先,这个题目是须要对文件的内容进行排序操作。我们都知道在mapper阶段是会对key进行排序的,我们就利用这个出发,把输入一行的数据转换成int,再把该int做mapper的key输出,而value的输出随便,我们这里输出1;然后在reduce阶段我们把mapper的key做为reduce的value输出,而key仅仅需定义一个全局的静态变量,每次输出自增就可以。

package cn.lmj.mapreduce;





import java.io.IOException;

import java.util.Iterator;





import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.TextOutputFormat;





public class Sort

{

public static class SortMapper extends MapReduceBase implements

Mapper<Object, Text, IntWritable, IntWritable>

{

@Override

public void map(Object key, Text value,

OutputCollector<IntWritable, IntWritable> output,

Reporter reporter) throws IOException

{

String line = value.toString();

int i = Integer.parseInt(line.toString());

output.collect(new IntWritable(i), new IntWritable(1));

}

}





public static class SortReducer extends MapReduceBase implements

Reducer<IntWritable, IntWritable, IntWritable, IntWritable>

{

//必须是全局的静态变量,由于reduce的实例在开发中可能会有非常多个,必须让多个对象共享同一个变量

private static IntWritable linenum = new IntWritable(1);





@Override

public void reduce(IntWritable key, Iterator<IntWritable> values,

OutputCollector<IntWritable, IntWritable> output,

Reporter reporter) throws IOException

{

while (values.hasNext())

{

values.next();

output.collect(linenum, key);

//每次输出让linenum加1

linenum = new IntWritable(linenum.get() + 1);

}

}

}





public static void main(String[] args) throws Exception

{

JobConf conf = new JobConf(Sort.class);

conf.setJobName("cccccc");





conf.setOutputKeyClass(IntWritable.class);

conf.setOutputValueClass(IntWritable.class);





conf.setMapperClass(SortMapper.class);

//注意,这个题目不能够设置Combiner对mapper之后的数据进行预先合拼

conf.setReducerClass(SortReducer.class);





conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);





FileInputFormat.setInputPaths(conf, new Path("/zuoye/file1/"));

FileOutputFormat.setOutputPath(conf, new Path("/zuoye/file1/output"));





JobClient.runJob(conf);

}

}

mapreduce程序来实现分类的更多相关文章

  1. hive--构建于hadoop之上、让你像写SQL一样编写MapReduce程序

    hive介绍 什么是hive? hive:由Facebook开源用于解决海量结构化日志的数据统计 hive是基于hadoop的一个数据仓库工具,可以将结构化的数据映射为数据库的一张表,并提供类SQL查 ...

  2. 攻城狮在路上(陆)-- 配置hadoop本地windows运行MapReduce程序环境

    本文的目的是实现在windows环境下实现模拟运行Map/Reduce程序.最终实现效果:MapReduce程序不会被提交到实际集群,但是运算结果会写入到集群的HDFS系统中. 一.环境说明:     ...

  3. windows环境下Eclipse开发MapReduce程序遇到的四个问题及解决办法

    按此文章<Hadoop集群(第7期)_Eclipse开发环境设置>进行MapReduce开发环境搭建的过程中遇到一些问题,饶了一些弯路,解决办法记录在此: 文档目的: 记录windows环 ...

  4. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  5. 如何在Hadoop的MapReduce程序中处理JSON文件

    简介: 最近在写MapReduce程序处理日志时,需要解析JSON配置文件,简化Java程序和处理逻辑.但是Hadoop本身似乎没有内置对JSON文件的解析功能,我们不得不求助于第三方JSON工具包. ...

  6. hadoop——在命令行下编译并运行map-reduce程序 2

     hadoop map-reduce程序的编译需要依赖hadoop的jar包,我尝试javac编译map-reduce时指定-classpath的包路径,但无奈hadoop的jar分布太散乱,根据自己 ...

  7. hadoop-初学者写map-reduce程序中容易出现的问题 3

    1.写hadoop的map-reduce程序之前所必须知道的基础知识: 1)hadoop map-reduce的自带的数据类型: Hadoop提供了如下内容的数据类型,这些数据类型都实现了Writab ...

  8. mapreduce程序编写(WordCount)

    折腾了半天.终于编写成功了第一个自己的mapreduce程序,并通过打jar包的方式运行起来了. 运行环境: windows 64bit eclipse 64bit jdk6.0 64bit 一.工程 ...

  9. 基于Maven管理的Mapreduce程序下载依赖包到LIB目录

    1.Mapreduce程序需要打包作为作业提交到Hadoop集群环境运行,但是程序中有相关的依赖包,如果没有一起打包,会出现xxxxClass Not Found . 2.在pom.xml文件< ...

随机推荐

  1. expression:stream!=NULL

    如果fopen()后返回的是NULL:就不能调用fclose()了: 用fopen()获得的文件句柄不是NULL,那么就需要用fclose()来关闭它.如果是NULL则不需要 null就表示你打开文件 ...

  2. php中empty()、isset()、is_null()和变量本身的布尔判断区别(转)

    在php脚本中,我们经常要去判断一个变量是否已定义或者是否为空,就需要用到这些函数empty().isset().is_null()和其本身作为参数,下面小段程序做个简要比较 <?php//预定 ...

  3. MySQL多表查询之外键、表连接、子查询、索引

    MySQL多表查询之外键.表连接.子查询.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复的,不允许为 ...

  4. hdu 1392(凸包)

    传送门:Surround the Trees 题意:求凸包的周长. 分析:凸包模板题,先按极角排好序后,然后根据叉积正负确定凸包. #include <stdio.h> #include ...

  5. How to convert `ctime` to `datetime` in Python? - Stack Overflow

    How to convert `ctime` to `datetime` in Python? - Stack Overflow How to convert `ctime` to `datetime ...

  6. Android----------WindowManager

    我们Android平台是一个又一个的Activity组成的,每个Activity有一个或者多个View构成.所以说.当我们想显示一个界面的时候,我们首先想到的是建立一个Activity,然后全部的操作 ...

  7. ExtJs 设置GridPanel表格文本垂直居中

    业务场景,需要实现最终效果图如下: GridPanel代码如下配置: { xtype : 'grid', id : 'grid_jglb', frame : true, region : 'cente ...

  8. HTML转义字符大全(转)

    1.常用转义字符 转义字符串(Escape Sequence)也称字符实体(Character Entity).在HTML中,定义转义字符串的原因有两个:第一个原因是像“<”和“>”这类符 ...

  9. kubuntu14.04以下vpn(vpnc)连接配置

    前几天在公司内部一直配置不了kubuntu14.04以下的vpn,从而无法实如今外网訪问公司内网的一些功能:是不方便在回家后继续coding(当然还有其他的事情.如邮件收发等.能够不用在linux以下 ...

  10. c++构造函数隐式转换--转换构造函数

    其实我们已经在C/C++中见到过多次标准类型数据间的转换方式了,这种形式用于在程序中将一种指定的数据转换成另一指定的类型,也即是强制转换,比如:int a = int(1.23),其作用是将1.23转 ...