最近BA用户反馈有两句看似很像的语句返回的结果数不一样,比较奇怪,怀疑是不是Hive的Bug

Query 1 返回结果数6071

select count(distinct reviewid) as dis_reviewcnt
from
(select a.reviewid
from bi.dpods_dp_reviewreport a
left outer join bi.dpods_dp_reviewlog b
on a.reviewid=b.reviewid and b.hp_statdate='2013-07-24'
where to_date(a.feedadddate) >= '2013-07-01' and a.hp_statdate='2013-07-24'
) a

Query 2 返回结果数6443

select count(distinct reviewid) as dis_reviewcnt
from
(select a.reviewid
from bi.dpods_dp_reviewreport a
left outer join bi.dpods_dp_reviewlog b
on a.reviewid=b.reviewid and b.hp_statdate='2013-07-24' and a.hp_statdate='2013-07-24'
where to_date(a.feedadddate) >= '2013-07-01'
) a

第二条query比第一条多了372条数据,而且在子查询的左表中并不存在

两条语句唯一的区别是dpods_dp_reviewreport的分区过滤条件(hp_statdate是partition column)一个在where后面,另一个在on后面

粗看感觉出来的数据应该是一样的,但是玄机其实就在where和on的区别。

where 后面跟的是过滤条件,query 1 中的a.hp_statdate='2013-07-24', 在table scan之前就会Partition Pruner 过滤分区,所以只有'2013-07-24'下的数据会和dpods_dp_reviewlog进行join。

而query 2中会读入所有partition下的数据,再和dpods_dp_reviewlog join,并且根据join的关联条件只有a.hp_statdate='2013-07-24'的时候才会真正执行join,其余情况下又由于是left outer join, join不上右面会留NULL,query 2中其实是取出了所有的reviewid,所以会和query 1 结果不一样

可以做一个实验,query2去掉on后面的a.hp_statdate='2013-07-24',其余不动,执行语句,出来的distinct reviewcnt 也是 6443

select count(distinct reviewid) as dis_reviewcnt
from
(select a.reviewid
from bi.dpods_dp_reviewreport a
left outer join bi.dpods_dp_reviewlog b
on a.reviewid=b.reviewid and b.hp_statdate='2013-07-24'
where to_date(a.feedadddate) >= '2013-07-01'
) a

query 1的query plan

ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_SUBQUERY (TOK_QUERY (TOK_FROM (TOK_LEFTOUTERJOIN (TOK_TABREF (TOK_TABNAME bi dpods_dp_reviewreport) a) (TOK_TABREF (TOK_TABNAME bi dpods_dp_reviewlog) b) (and (= (. (TOK_TABLE_OR_COL a) reviewid) (. (TOK_TABLE_OR_COL b) reviewid)) (= (. (TOK_TABLE_OR_COL b) hp_statdate) '2013-07-24')))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL a) reviewid))) (TOK_WHERE (and (>= (TOK_FUNCTION to_date (. (TOK_TABLE_OR_COL a) feedadddate)) '2013-07-01') (= (. (TOK_TABLE_OR_COL a) hp_statdate) '2013-07-24'))))) a)) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_FUNCTIONDI count (TOK_TABLE_OR_COL reviewid)) dis_reviewcnt)))) STAGE DEPENDENCIES:
Stage-5 is a root stage , consists of Stage-1
Stage-1
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage STAGE PLANS:
Stage: Stage-5
Conditional Operator Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
a:a
TableScan
alias: a
Filter Operator
predicate:
expr: (to_date(feedadddate) >= '2013-07-01')
type: boolean
Reduce Output Operator
key expressions:
expr: reviewid
type: int
sort order: +
Map-reduce partition columns:
expr: reviewid
type: int
tag: 0
value expressions:
expr: feedadddate
type: string
expr: reviewid
type: int
expr: hp_statdate
type: string
a:b
TableScan
alias: b
Reduce Output Operator
key expressions:
expr: reviewid
type: int
sort order: +
Map-reduce partition columns:
expr: reviewid
type: int
tag: 1
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
condition expressions:
0 {VALUE._col5} {VALUE._col8} {VALUE._col17}
1
handleSkewJoin: false
outputColumnNames: _col5, _col8, _col17
Select Operator
expressions:
expr: _col8
type: int
outputColumnNames: _col0
Select Operator
expressions:
expr: _col0
type: int
outputColumnNames: _col0
Group By Operator
aggregations:
expr: count(DISTINCT _col0)
bucketGroup: false
keys:
expr: _col0
type: int
mode: hash
outputColumnNames: _col0, _col1
File Output Operator
compressed: true
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://10.2.6.102/tmp/hive-hadoop/hive_2013-07-26_18-10-59_408_7272696604651905662/-mr-10002
Reduce Output Operator
key expressions:
expr: _col0
type: int
sort order: +
tag: -1
value expressions:
expr: _col1
type: bigint
Reduce Operator Tree:
Group By Operator
aggregations:
expr: count(DISTINCT KEY._col0:0._col0)
bucketGroup: false
mode: mergepartial
outputColumnNames: _col0
Select Operator
expressions:
expr: _col0
type: bigint
outputColumnNames: _col0
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0
Fetch Operator
limit: -1

Query 2的query plan

ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_SUBQUERY (TOK_QUERY (TOK_FROM (TOK_LEFTOUTERJOIN (TOK_TABREF (TOK_TABNAME bi dpods_dp_reviewreport) a) (TOK_TABREF (TOK_TABNAME bi dpods_dp_reviewlog) b) (and (and (= (. (TOK_TABLE_OR_COL a) reviewid) (. (TOK_TABLE_OR_COL b) reviewid)) (= (. (TOK_TABLE_OR_COL b) hp_statdate) '2013-07-24')) (= (. (TOK_TABLE_OR_COL a) hp_statdate) '2013-07-24')))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL a) reviewid))) (TOK_WHERE (>= (TOK_FUNCTION to_date (. (TOK_TABLE_OR_COL a) feedadddate)) '2013-07-01')))) a)) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_FUNCTIONDI count (TOK_TABLE_OR_COL reviewid)) dis_reviewcnt)))) STAGE DEPENDENCIES:
Stage-5 is a root stage , consists of Stage-1
Stage-1
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage STAGE PLANS:
Stage: Stage-5
Conditional Operator Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
a:a
TableScan
alias: a
Filter Operator
predicate:
expr: (to_date(feedadddate) >= '2013-07-01')
type: boolean
Reduce Output Operator
key expressions:
expr: reviewid
type: int
sort order: +
Map-reduce partition columns:
expr: reviewid
type: int
tag: 0
value expressions:
expr: feedadddate
type: string
expr: reviewid
type: int
expr: hp_statdate
type: string
a:b
TableScan
alias: b
Reduce Output Operator
key expressions:
expr: reviewid
type: int
sort order: +
Map-reduce partition columns:
expr: reviewid
type: int
tag: 1
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
condition expressions:
0 {VALUE._col5} {VALUE._col8}
1
filter predicates:
0 {(VALUE._col17 = '2013-07-24')}
1
handleSkewJoin: false
outputColumnNames: _col5, _col8
Select Operator
expressions:
expr: _col8
type: int
outputColumnNames: _col0
Select Operator
expressions:
expr: _col0
type: int
outputColumnNames: _col0
Group By Operator
aggregations:
expr: count(DISTINCT _col0)
bucketGroup: false
keys:
expr: _col0
type: int
mode: hash
outputColumnNames: _col0, _col1
File Output Operator
compressed: true
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://10.2.6.102/tmp/hive-hadoop/hive_2013-07-26_18-13-32_879_3623450294049807419/-mr-10002
Reduce Output Operator
key expressions:
expr: _col0
type: int
sort order: +
tag: -1
value expressions:
expr: _col1
type: bigint
Reduce Operator Tree:
Group By Operator
aggregations:
expr: count(DISTINCT KEY._col0:0._col0)
bucketGroup: false
mode: mergepartial
outputColumnNames: _col0
Select Operator
expressions:
expr: _col0
type: bigint
outputColumnNames: _col0
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0
Fetch Operator
limit: -1

参考:

http://blog.sina.com.cn/s/blog_6ff05a2c01010oxp.html

hive left outer join的问题的更多相关文章

  1. HIVE中join、semi join、outer join举例详解

    转自 http://www.cnblogs.com/xd502djj/archive/2013/01/18/2866662.html 举例子: hive> select * from zz0;  ...

  2. hive中left join、left outer join和left semi join的区别

    先说结论,再举例子.   hive中,left join与left outer join等价.   left semi join与left outer join的区别:left semi join相当 ...

  3. HIVE中join、semi join、outer join

    补充说明 left outer join where is not null与left semi join的联系与区别:两者均可实现exists in操作,不同的是,前者允许右表的字段在select或 ...

  4. hive 包含操作(left semi join)(left outer join = in)迪卡尔积

    目前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现. 假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注 ...

  5. hive regex insert join group cli

    1.insert Insert时,from子句既能够放在select子句后,也能够放在insert子句前,以下两句是等价的 hive> FROM invites a INSERT OVERWRI ...

  6. 一起学Hive——总结各种Join连接的用法

    Hive支持常用的SQL join语句,例如内连接.左外连接.右外连接以及HiVe独有的map端连接.其中map端连接是用于优化Hive连接查询的一个重要技巧. 在介绍各种连接之前,先准备好表和数据. ...

  7. hive中的join

    建表 : jdbc:hive2://localhost:10000> create database myjoin; No rows affected (3.78 seconds) : jdbc ...

  8. Oracle Partition Outer Join 稠化报表

    partition outer join实现将稀疏数据转为稠密数据,举例: with t as (select deptno, job, sum(sal) sum_sal from emp group ...

  9. SQL Server 2008 R2——使用FULL OUTER JOIN实现多表信息汇总

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

随机推荐

  1. 从头开始学JavaScript (五)——操作符(二)

    原文:从头开始学JavaScript (五)--操作符(二) 一.乘性操作符 1.乘法:*      乘法操作符的一些特殊规则: 如果操作数都是数值,按照常规的乘法计算,如果乘积超过了ECMAscri ...

  2. [CLR via C#]1.3 加载公共语言运行时

    原文:[CLR via C#]1.3 加载公共语言运行时 1. 你生成的每个程序集可以是EXE,也可以是DLL.最终都是有CLR管理这些程序集中代码的执行. 2. VS2010中,创建新的EXE项目时 ...

  3. .net mvc ajax list post

    http://stackoverflow.com/questions/13242414/passing-a-list-of-objects-into-an-mvc-controller-method- ...

  4. linq 分组求和

    static void Main()         {             DataTable dt = new DataTable();             dt.Columns.Add( ...

  5. 使用Jenkins来构建Docker容器

    使用Jenkins来构建Docker容器(Ubuntu 14.04) 当开发更新了代码,提交到Gitlab上,然后由测试人员触发Jenkins,于是一个应用的新版本就被构建了.听起来貌似很简单,dua ...

  6. Sqlserver2008安装部署文档

    Sqlserver2008部署文档 注意事项: 如果你要安装的是64位的服务器,并且是新机器.那么请注意,你需要首先需要给64系统安装一个.net framework,如果已经安装此功能,请略过这一步 ...

  7. UIAutomator源码分析之启动和运行

    通过上一篇<Android4.3引入的UiAutomation新框架官方简介>我们可以看到UiAutomator其实就是使用了UiAutomation这个新框架,通过调用Accessibi ...

  8. Appium Android Bootstrap源码分析之简介

    在上一个系列中我们分析了UiAutomator的核心源码,对UiAutomator是怎么运行的原理有了根本的了解.今天我们会开始另外一个在安卓平台上基于UiAutomator的新起之秀--Appium ...

  9. PCIe固态存储和HDD常见的硬盘性能对比测试

    2周测试后,导致以下结果 MySQL-OLTP测试结果:(50表.每个表1000广域网数据,1000个线程) TPS:MySQL在PCIe固态存储上执行是在HDD上执行的5.63倍 writes:My ...

  10. VMware Workstation 无法与 Windows XP \ Windows 7 \ Windows 8 进行共享文件夹。

    1.这是一个小Bug,做法很简单. ----①.如果安装了VMware Tools,先卸载VMware Tools,重启虚拟机,再安装VMware Tools,重启虚拟机,就行了. ----②.如果没 ...