1118. Nontrivial Numbers

Time limit: 2.0 second
Memory limit: 64 MB
Specialists of SKB Kontur have developed a unique cryptographic algorithm for needs of information protection while transmitting data over the Internet. The main advantage of the algorithm is that you needn't use big numbers as keys; you may easily do with natural numbers not exceeding a million. However, in order to strengthen endurance of the cryptographic system it is recommended to use special numbers - those that psychologically seem least "natural". We introduce a notion oftriviality in order to define and emphasize those numbers.
Triviality of a natural number N is the ratio of the sum of all its proper divisors to the number itself. Thus, for example, triviality of the natural number 10 is equal to 0.8 = (1 + 2 + 5) / 10 and triviality of the number 20 is equal to 1.1 = (1 + 2 + 4 + 5 + 10) / 20. Recall that a proper divisor of a natural number is the divisor that is strictly less than the number.
Thus, it is recommended to use as nontrivial numbers as possible in the cryptographic protection system of SKB Kontur. You are to write a program that will find the less trivial number in a given range.

Input

The only line contains two integers I and J, 1 ≤ I ≤ J ≤ 106, separated with a space.

Output

Output the only integer N satisfying the following conditions:
  1. I ≤ N ≤ J;
  2. N is the least trivial number among the ones that obey the first condition.

Sample

input output
24 28
25

题意:

“SKB-Kontur”的专家们开发了一种独特的密码算法以满足在互联网上传送数据时的信息保密需要。这种算法的最大好处是,您不需要使用大数字作为密码——您可以方便地用小于一百万的自然数作为密码。但是,为了加强密码系统的安全性,推荐您使用特殊数字——那些心理上认为最不“自然”的数字。我们引入“Triviality”这个概念定义和强调那些数字。

一个自然数N的“Triviality”被定义它所有的Proper约数之和与它本身的比值。例如,自然数10的“Triviality”是0.8=(1+2+5)/10,自然数20的“Triviality”是1.1=(1+2+4+5+10)/20。注意一个自然数的Proper约数是指这个数的所有约数中严格地小于这个数本身的那些约数。

正因为如此,在“SKB-Kontur”密码安全系统中推荐尽可能使用Non-Trivial数字。你的任务是写一个程序,在给定的范围内找出“Triviality”值最小的数字。

思路:其实就是暴力,只不过加了一些优化;

代码:

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string> using namespace std; int judge(int m)
{
int p=;
int k=sqrt((double)m);
for(int i=;i<=k;i++){
if(m%i==){
if(i==k &&k*k==m)p+= i;
else p+=i+m/i;
}
}
return p;
} int main()
{
int a,b;
cin>>a>>b;
if(a==){
printf("1\n");
return ;
}
double minx=0x7ffff;
double p=;
int t;
for(int i=b;i>=a;i--){
p=judge(i);
if(p==1.0){
t=i;
break;
}
if(minx>p/i){
minx=p/i;
t=i;
}
}
printf("%d\n",t);
return ;
}

ural 1118. Nontrivial Numbers的更多相关文章

  1. 递推DP URAL 1586 Threeprime Numbers

    题目传送门 /* 题意:n位数字,任意连续的三位数字组成的数字是素数,这样的n位数有多少个 最优子结构:考虑3位数的数字,可以枚举出来,第4位是和第3位,第2位组成的数字判断是否是素数 所以,dp[i ...

  2. 递推DP URAL 1009 K-based Numbers

    题目传送门 题意:n位数,k进制,求个数分析:dp[i][j] 表示i位数,当前数字为j的个数:若j==0,不加dp[i-1][0]; 代码1: #include <cstdio> #in ...

  3. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  4. ural 1150. Page Numbers

    1150. Page Numbers Time limit: 1.0 secondMemory limit: 64 MB John Smith has decided to number the pa ...

  5. URAL 2031. Overturned Numbers (枚举)

    2031. Overturned Numbers Time limit: 1.0 second Memory limit: 64 MB Little Pierre was surfing the In ...

  6. URAL 1002 Phone Numbers(KMP+最短路orDP)

    In the present world you frequently meet a lot of call numbers and they are going to be longer and l ...

  7. URAL1118. Nontrivial Numbers

    1118 优化 1.枚举到sqrt(n)2.区间有质数直接输出最大质数3.a=1 直接输出1 4.边+边与最小值比较 #include <iostream> #include<cst ...

  8. URAL 1012 K-based Numbers. Version 2(DP+高精度)

    题目链接 题意 :与1009一样,不过这个题的数据范围变大. 思路:因为数据范围变大,所以要用大数模拟,用java也行,大数模拟也没什么不过变成二维再做就行了呗.当然也可以先把所有的都进行打表,不过要 ...

  9. ural 1013. K-based Numbers. Version 3(动态规划)

    1013. K-based Numbers. Version 3 Let’s consider K-based numbers, containing exactly N digits. We def ...

随机推荐

  1. 面试经典——从输入 URL 到页面加载完的过程中都发生了什么事情?

    想要更加了解http协议,猛戳这里 1)把URL分割成几个部分:协议.网络地址.资源路径.其中网络地址指示该连接网络上哪一台计算机,可以是域名或者IP地址,可以包括端口号:协议是从该计算机获取资源的方 ...

  2. 从excel读数据到informix的Found a quote for which there is no matching quote错误

    我从excel读取数据,然后存储到Informix数据库里.偶尔会发现出现Found a quote for which there is no matching quote这个错误.调试后发现,是因 ...

  3. 怎样成为PHP 方向的一个合格的架构师(转)

    突然看到这篇文章, 值得反省, 乐在其中, 在接下来的发展中不被淘汰的都来看看, 如何成为一个架构师先明确这里所指的PHP工程师,是指主要以PHP进行Web系统的开发,没有使用其的语言工作过.工作经验 ...

  4. docker openvswitch网络方案

    1. 测试环境 75机(10.11.150.75):Red Hat Enterprise Linux Server 7.0,无外网访问权限,已安装Docker Server 74机(10.11.150 ...

  5. hql中的in查询

    public List<ShopDianpu> findbymiaosha(long id, List<Object> list) throws Exception { Str ...

  6. Android实现动画循环的方式

    每次想到循环播放.重复执行时,脑海中总是冒出在while(true)的实现方式. Thread thread = new Thread(new Runnable(){ public void run( ...

  7. CSU 1639 队长,我想进集训队!

    水题 #include<cstdio> int main() { int x1, x2, x3, u, h; int n; while (~scanf("%d", &a ...

  8. Xssf配合metaspolit使用

    安装xssf download:  svn export http://xssf.googlecode.com/svn/trunk /home/User/xssf install: svn expor ...

  9. 第七十四节,css边框与背景

    css边框与背景 学习要点: 1.声明边框 2.边框样式 3.圆角边框  本章主要探讨HTML5中CSS边框和背景,通过边框和背景的样式设置,给元素增加更丰富的外观. 声明边框 边框的声明有三个属性设 ...

  10. placeholder的美化

    之前在介绍HTML5的placeholder属性时,曾实现了一些页面例子让大家参考,但这些例子里的背景文字都是灰色的,样式很单一,其实它们可以做的更好看.CSS3里提供了专门的规则属性来美化用plac ...