SPOJ 15. The Shortest Path 堆优化Dijsktra
You are given a list of cities. Each direct connection between two cities has its transportation cost (an integer bigger than 0). The goal is to find the paths of minimum cost between pairs of cities. Assume that the cost of each path (which is the sum of costs
of all direct connections belongning to this path) is at most 200000. The name of a city is a string containing characters a,...,z and is at most 10 characters long.
Input
s [the number of tests <= 10]
n [the number of cities <= 10000]
NAME [city name]
p [the number of neighbours of city NAME]
nr cost [nr - index of a city connected to NAME (the index of the first city is 1)]
[cost - the transportation cost]
r [the number of paths to find <= 100]
NAME1 NAME2 [NAME1 - source, NAME2 - destination]
[empty line separating the tests]
Output
cost [the minimum transportation cost from city NAME1 to city NAME2 (one per line)]
Example
Input:
1
4
gdansk
2
2 1
3 3
bydgoszcz
3
1 1
3 1
4 4
torun
3
1 3
2 1
4 1
warszawa
2
2 4
3 1
2
gdansk warszawa
bydgoszcz warszawa Output:
3
2
使用堆优化Dijsktra的代码都是一大坨的。写起来好累。
要求对堆和图论和Dijsktra算法都十分熟悉。
这次写了两个多小时,最终过了,这种题目对思维锻炼是十分有帮助的。
优先熟悉堆的主要函数有:
1 堆中的元素添加和降低值的操作
2 取出堆顶值的操作
灵活修改Dijsktra。仅仅是求两点之间的最短路径。
之前使用指针写过。这次使用静态数组和vector来表示邻接表来解决。不用指针动态分配内存,速度更加快点。
Heap的操作所实用class封装起来了。
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string>
#include <map>
#include <vector>
#include <string.h> using namespace std;
const int MAX_C = 15;
const int MAX_N = 10005; struct Node
{
int des, cost;
};
vector<Node> gra[MAX_N]; void insertNeighbor(int src, int des, int cost)
{
Node n;
n.cost = cost;
n.des = des;
gra[src].push_back(n);
} struct hNode
{
int ver, dis;
};
hNode heaps[MAX_N];
int hPos[MAX_N];//指示顶点在堆中的位置 class MinHeap
{
public:
int size;
MinHeap(int s = 0): size(s) {} int lson(int rt) { return rt<<1; }
int rson(int rt) { return rt<<1 | 1; }
int parent(int rt) { return rt>>1; } void swaphNode(int l, int r)
{
hNode t = heaps[l];
heaps[l] = heaps[r];
heaps[r] = t; hPos[heaps[r].ver] = r;
hPos[heaps[l].ver] = l;
} void pushUp(int rt)
{
while (parent(rt) > 0 && heaps[parent(rt)].dis > heaps[rt].dis)
{
swaphNode(rt, parent(rt));
rt = parent(rt);
}
} void pushDown(int rt)
{
int l = lson(rt);
if (l > size) return ;
int r = rson(rt); int sma = rt;
if (heaps[sma].dis > heaps[l].dis) sma = l;
if (r <= size && heaps[sma].dis > heaps[r].dis) sma = r; if (sma != rt)
{
swaphNode(sma, rt);
pushDown(sma);
}
} void increase(int ver, int dis)
{
int rt = hPos[ver];
heaps[rt].dis = dis; pushDown(rt);
} void decrease(int ver, int dis)
{
int rt = hPos[ver];
heaps[rt].dis = dis; pushUp(rt);
} void insert(int ver, int dis)
{
size++;
heaps[size].dis = dis;
heaps[size].ver = ver;
hPos[ver] = size; pushUp(size);
} bool verIsInHeap(int ver)
{
int rt = hPos[ver];
return rt <= size;
} bool isInHeap(int rt)
{
return rt <= size;
} void extractMin()
{
swaphNode(1, size);
--size;
pushDown(1);
}
}; int dijsktra(int src, int des, int vers)
{
MinHeap mheap;
for (int v = 1; v <= vers; v++)
{
mheap.insert(v, INT_MAX);
}
mheap.decrease(src, 0); for (int v = 1; v < vers; v++)
{
if (heaps[1].ver == des) return heaps[1].dis;
int u = heaps[1].ver;
int dis = heaps[1].dis; if (dis == INT_MAX) return INT_MAX;//防止溢出 mheap.extractMin(); int n = (int)gra[u].size();
for (int j = 0; j < n; j++)
{
int ver = gra[u][j].des;
int c = gra[u][j].cost;
int rt = hPos[ver]; if (mheap.isInHeap(rt) && dis+c < heaps[rt].dis)
{
mheap.decrease(ver, dis+c);
}
}
}
return heaps[1].dis;
} int main()
{
int T, n, p, nr, cost, r, src, des;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
memset(heaps, 0, sizeof(hNode) * (n+1));
memset(hPos, 0, sizeof(int) * (n+1));
for (int i = 0; i <= n; i++)
{
gra[i].clear();
} map<string, int> msi;
char str[MAX_C];
for (int i = 1; i <= n; i++)
{
scanf("%s", str);
msi[str] = i;
scanf("%d", &p);
for (int j = 0; j < p; j++)
{
scanf("%d %d", &nr, &cost);
insertNeighbor(i, nr, cost);
}
}
scanf("%d", &r);
for (int i = 0; i < r; i++)
{
scanf("%s", str);
src = msi[str];
scanf("%s", str);
des = msi[str]; printf("%d\n", dijsktra(src, des, n));
}
}
return 0;
}
版权声明:笔者靖心脏,景空间地址:http://blog.csdn.net/kenden23/,只有经过作者同意转载。
SPOJ 15. The Shortest Path 堆优化Dijsktra的更多相关文章
- SPOJ 15. The Shortest Path 最短路径题解
本题就是给出一组cities.然后以下会询问,两个cities之间的最短路径. 属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了. 由于本题反复查询次数也不多,故此假设保存全部最 ...
- [CF1051F]The Shortest Statement_堆优化dij_最短路树_倍增lca
The Shortest Statement 题目链接:https://codeforces.com/contest/1051/problem/F 数据范围:略. 题解: 关于这个题,有一个重要的性质 ...
- POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)
昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...
- [CF843D]Dynamic Shortest Path
[CF843D]Dynamic Shortest Path 题目大意: 给定一个带权有向图,包含\(n(n\le10^5)\)个点和\(m(m\le10^5)\)条边.共\(q(q\le2000)\) ...
- NEU 1685: All Pair Shortest Path
题目描述 Bobo has a directed graph G with n vertex labeled by 1,2,3,..n. Let D(i,j) be the number of edg ...
- PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)
E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- 深入理解dijkstra+堆优化
深入理解dijkstra+堆优化 其实就这几种代码几种结构,记住了完全就可以举一反三,所以多记多练多优化多思考. Dijkstra 对于一个有向图或无向图,所有边权为正(边用邻接矩阵的形式给出), ...
- hdu-----(2807)The Shortest Path(矩阵+Floyd)
The Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- Cocos2d-x 2地图步行实现:SPFA算法
本文乃Siliphen原创,转载请注明出处:http://blog.csdn.net/stevenkylelee 上一节<Cocos2d-x 地图行走的实现1:图论与Dijkstra算法> ...
- Justinmind教程(3)——管理原型
如已经描述Justinmind概述和Justinmind简单的计算器功能 Justinmind使用教程(1)--概述部分 Justinmind使用教程(2)--计算表达式及条件用法 本章将回到最原始的 ...
- js检测浏览器中是否安装了flash播放插件
这两天工作中需要在网页中嵌入flash小游戏,我使用的是swfobject.js version:1.5.其他方面都很好,唯独版本检测这里一直没有搞通,后来实在无奈之下,改用js来检测浏览器的flas ...
- HTML 5最终确定,八年后,我们再谈谈如何改变世界
从原:http://www.36kr.com/p/216655.html 我们第一次谈论HTML5要改变世界大概是由于乔布斯,他坚持在iOS上不兼容Flash,在Adobe统治多媒体开发的那个年代.这 ...
- POJ 2533-Longest Ordered Subsequence(DP)
Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34454 Acc ...
- OGG-01008 Extract displays Discarding bad record (discard recs=1) when using filter or where clause
因为在extract參数文件里使用了where语句,而where后面的的条件列又不是主键,没有为update.delete操作记录日志,因此会报1008错误. Applies to: Oracle G ...
- 数据验证validator 与 DWZ
在进行系统经常使用的数据验证.数据验证可以编写自己的,它也可以用来作为现在.现在,记录这两个库的使用, validator <!DOCTYPE HTML PUBLIC "-//W3C/ ...
- [置顶] ffmpg简介以及用它实现音频视频合并(java)
1.简介 FFmpeg是一个自由软件,可以运行音频和视频多种格式的录影.转档.流功能. 2.下载 源代码 git://git.libav.org/libav.git Windo ...
- Red Gate系列之三 SQL Server 开发利器 SQL Prompt 5.3.4.1 Edition T-SQL智能感知分析器 完全破解+使用教程
原文:Red Gate系列之三 SQL Server 开发利器 SQL Prompt 5.3.4.1 Edition T-SQL智能感知分析器 完全破解+使用教程 Red Gate系列之三 SQL S ...
- lambda Join /Group by/ Contains
1.Join Contains