Problem Description
In this problem, you are given a string s and q queries.



For each query, you should answer that when all distinct substrings of string s were sorted lexicographically, which one is the k-th smallest. 



A substring si...j of the string s = a1a2 ...an(1 ≤ i ≤ j ≤ n) is the string aiai+1 ...aj. Two substrings sx...y and sz...w are cosidered to be distinct if sx...y ≠
Sz...w
 
Input
The input consists of multiple test cases.Please process till EOF. 



Each test case begins with a line containing a string s(|s| ≤ 105) with only lowercase letters.



Next line contains a postive integer q(1 ≤ q ≤ 105), the number of questions.



q queries are given in the next q lines. Every line contains an integer v. You should calculate the k by k = (l⊕r⊕v)+1(l, r is the output of previous question, at the beginning of each case l = r = 0, 0 < k < 263, “⊕” denotes exclusive or)
 
Output
For each test case, output consists of q lines, the i-th line contains two integers l, r which is the answer to the i-th query. (The answer l,r satisfies that sl...r is the k-th smallest and if there are several l,r available, ouput l,r which with
the smallest l. If there is no l,r satisfied, output “0 0”. Note that s1...n is the whole string)
 
Sample Input
aaa
4
0
2
3
5
 
Sample Output
1 1
1 3
1 2
0 0
 
Source
 

题意:求第k大的子串,输出左右端点,且左端点尽量小。

思路:首先。我们能够计算出不同的子串个数,这个在论文里有的。就是

n-sa[i]-height[i]。

然后我们就能够统计第i大的字符串有的子串个数,然后二分查找到第k个所在的第sa[i]后缀,接着我们能够先确定右端点的范围来RMQ查找sa[j]最小的那个。仅仅要是满足和sa[i]后缀的lcp的长度大于len,就代表也包括这个子串了,接着就是RMQ了,坑点就是l=mid的时候的多一个推断

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
//typedef long long ll;
typedef __int64 ll;
using namespace std;
const int maxn = 100010; int sa[maxn];
int t1[maxn], t2[maxn], c[maxn];
int rank[maxn], height[maxn]; void build_sa(int s[], int n, int m) {
int i, j, p, *x = t1, *y = t2;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[i] = s[i]]++;
for (i = 1; i < m; i++) c[i] += c[i-1];
for (i = n-1; i >= 0; i--) sa[--c[x[i]]] = i; for (j = 1; j <= n; j <<= 1) {
p = 0;
for (i = n-j; i < n; i++) y[p++] = i;
for (i = 0; i < n; i++)
if (sa[i] >= j)
y[p++] = sa[i] - j;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[y[i]]]++;
for (i = 1; i < m; i++) c[i] += c[i-1];
for (i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x, y);
p = 1, x[sa[0]] = 0;
for (i = 1; i < n; i++)
x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+j] == y[sa[i]+j] ? p-1 : p++; if (p >= n) break;
m = p;
}
} void getHeight(int s[],int n) {
int i, j, k = 0;
for (i = 0; i <= n; i++)
rank[sa[i]] = i; for (i = 0; i < n; i++) {
if (k) k--;
j = sa[rank[i]-1];
while (s[i+k] == s[j+k]) k++;
height[rank[i]] = k;
}
}
int dp[maxn][30];
char str[maxn];
int r[maxn], ind[maxn][30];
ll b[maxn]; void initRMQ(int n) {
int m = floor(log(n+0.0) / log(2.0));
for (int i = 1; i <= n; i++)
dp[i][0] = height[i]; for (int i = 1; i <= m; i++) {
for (int j = n; j; j--) {
dp[j][i] = dp[j][i-1];
if (j+(1<<(i-1)) <= n)
dp[j][i] = min(dp[j][i], dp[j+(1<<(i-1))][i-1]);
}
}
} int lcp(int l, int r) {
int a = rank[l], b = rank[r];
if (a > b)
swap(a,b);
a++;
int m = floor(log(b-a+1.0) / log(2.0));
return min(dp[a][m], dp[b-(1<<m)+1][m]);
} void init(int n) {
int m = floor(log(n+0.0) / log(2.0));
for (int i = 1; i <= n; i++)
ind[i][0] = sa[i]; for (int i = 1; i <= m; i++) {
for (int j = n; j; j--) {
ind[j][i] = ind[j][i-1];
if (j+(1<<(i-1)) <= n)
ind[j][i] = min(ind[j][i], ind[j+(1<<(i-1))][i-1]);
}
}
} int rmq(int a, int b) {
int m = floor(log(b-a+1.0) / log(2.0));
return min(ind[a][m], ind[b-(1<<m)+1][m]);
} int main() {
while (scanf("%s", str) != EOF) {
int n = strlen(str);
for (int i = 0; i <= n; i++)
r[i] = str[i];
build_sa(r, n+1, 128);
getHeight(r, n);
initRMQ(n);
init(n); b[0] = 0;
for (int i = 1; i <= n; i++)
b[i] = b[i-1] + n - sa[i] - height[i]; int m;
scanf("%d", &m);
ll k;
int lastl = 0, lastr = 0;
while (m--) {
scanf("%I64d", &k);
k = (k ^ lastl ^ lastr) + 1;
if (k > b[n]) {
printf("0 0\n");
lastl = 0;
lastr = 0;
continue;
}
int id = lower_bound(b+1, b+1+n, k) - b;
k -= b[id-1];
int len = height[id] + k;
int ll = id;
int rr = id;
int L = id, R = n;
while (L <= R) {
int mid = (L + R) / 2;
if (sa[id] == sa[mid] || lcp(sa[id], sa[mid]) >= len) {
rr = mid;
L = mid + 1;
}
else R = mid - 1;
} int ansl = rmq(ll, rr) + 1;
int ansr = ansl + len - 1;
printf("%d %d\n", ansl, ansr);
lastl = ansl;
lastr = ansr;
}
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

HDU - 5008 Boring String Problem (后缀数组+二分法+RMQ)的更多相关文章

  1. HDU 5008 Boring String Problem(后缀数组+二分)

    题目链接 思路 想到了,但是木写对啊....代码 各种bug,写的乱死了.... 输出最靠前的,比较折腾... #include <cstdio> #include <cstring ...

  2. HDU 5008 Boring String Problem

    题意:给定一个串长度<=1e5,将其所有的不同的字串按照字典序排序,然后q个询问,每次询问字典序第k小的的起始坐标,并且起始坐标尽量小. 分析: 一开始看错题意,没有意识到是求不同的字串中第k小 ...

  3. HDU5008 Boring String Problem(后缀数组)

    练习一下字符串,做一下这道题. 首先是关于一个字符串有多少不同子串的问题,串由小到大排起序来应该是按照sa[i]的顺序排出来的产生的. 好像abbacd,排序出来的后缀是这样的 1---abbacd ...

  4. HDOJ 5008 Boring String Problem

    后缀数组+RMQ+二分 后缀数组二分确定第K不同子串的位置 , 二分LCP确定可选的区间范围 , RMQ求范围内最小的sa Boring String Problem Time Limit: 6000 ...

  5. HDU 3518 Boring counting(后缀数组,字符处理)

    题目 参考自:http://blog.sina.com.cn/s/blog_64675f540100k9el.html 题目描述: 找出一个字符串中至少重复出现两次的字串的个数(重复出现时不能重叠). ...

  6. poj 1743 Musical Theme (后缀数组+二分法)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16162   Accepted: 5577 De ...

  7. 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp

    题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...

  8. 【bzoj3879】SvT 后缀数组+倍增RMQ+单调栈

    题目描述 (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示), ...

  9. HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5008 Description In this problem, you are given ...

随机推荐

  1. HD2 Tmobile 重新分区代码(使用clk 1.6.5 de)

    fastboot oem part-resize misc: fastboot oem part-resize recovery: fastboot oem part-resize boot: fas ...

  2. Linux下安装Oracle11g服务器(转)

    安装环境 Linux服务器:SuSe10 sp2 64位 Oracle服务器:Oracle11gR2 64位 系统要求 Linux安装Oracle系统要求 系统要求 说明 内存 必须高于1G的物理内存 ...

  3. effective c++ 条款13 use object to manage resources.

    请求的系统资源需要最终还回系统,为了避免遗忘返还这个动作,可以利用析构函数在object销毁时自动调用的特点来实现. 简单说就是用object来管理资源. 以内存资源为例 class Investme ...

  4. 房费制 之 登录BUG

    声明:以下内容只有当你登录到一个username同时,学生不能申请多次登录.         说是BUG,事实上这也不是一个BUG,仅仅是想出一个办法,解决一个大家好多人都没有解决的问题.以下就给大家 ...

  5. Block学习一门:基本使用,使用block包NSURLRequest异步请求

    首先,看一下下面的代码: void (^myFirstBlock)(int theOne,int theTwo) = ^(int theOne,int theTwo){ NSLog(@"== ...

  6. maven插件的生命周期的详细说明(两)

    插件配置 定义解释:插件目标 当我们了解了maven插件之后.我们发现假设为每个功能编写一个独立的插件显然是不可取的,由于这些任务背后有非常多能够复用的代码.因此,把这些功能聚集在一个插件里,每个功能 ...

  7. 系列四TortoiseSvn客户端软件

    原文:系列四TortoiseSvn客户端软件 TortoiseSvn介绍 TortoiseSvn 是 Subversion 版本控制系统的一个免费开源客户端,可以超越时间的管理文件和目录.文件保存在中 ...

  8. 通过ccb(CocosBuilder)文件生成cocos2dx代码

    在C++下使用ccb.绑定调用,成员变量.让人头疼又easy犯错. 自己用pythong写了个小程序,通过ccb文件直接生成C++代码 python我用的不多.又是随性所做.代码质量就非常差.大家多多 ...

  9. android 反编译,反,注射LOG

    反编译smali注射显示LOG该代码.以后使用: .class public Lnet/iaround/connector/DebugClass; .super Ljava/lang/Object; ...

  10. fastclick 源码阅读备份

    ;(function () { 'use strict'; //构造函数 function FastClick(layer, options) { var oldOnClick; options = ...