P3768 简单的数学题

题目描述

输入一个整数n和一个整数p,你需要求出$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$,其中gcd(a,b)表示a与b的最大公约数。

输入输出格式

输入格式:

一行两个整数p、n。

输出格式:

一行一个整数$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$。

输入输出样例

输入样例#1:
复制

998244353 2000
输出样例#1:
复制

883968974

说明

对于20%的数据,$n \leq 1000$。

对于30%的数据,$n \leq 5000$。

对于60%的数据,$n \leq 10^6$,时限1s。

对于另外20%的数据,$n \leq 10^9$,时限3s。

对于最后20%的数据,$n \leq 10^{10}$,时限6s。

对于100%的数据,$5 \times 10^8 \leq p \leq 1.1 \times 10^9$且p为质数。

题解

先推一波式子。

\[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)\\
=\sum_{i=1}^n\sum_{j=1}^nij \sum_{d|i\wedge d|j}\varphi(d)\\
=\sum_{d=1}^n\varphi(d)\sum_{d|i}\sum_{d|j}ij\\
=\sum_{d=1}^n\varphi(d)d^2(\sum_{i=1}^{\lfloor\frac nd\rfloor}i)^2\\
=\sum_{d=1}^n\varphi(d)d^2S(\lfloor\frac nd\rfloor,3)
\]

其中\(S\)表示自然数幂和。所以只要能求出\(f(n)=\varphi(n)n^2\)的前缀和\(F(n)=\sum_{i=1}^nf(i)\),这个式子就能整数分块做。

考虑\(f(n)=\varphi(n)n^2\)它的形式,\(f=\varphi\cdot id^2\),符合杜教筛处理的形式。于是构造\(g(n)=n^2\),则

\[(f*g)(n)=\sum_{d|n}\varphi(d)d^2(\frac nd)^2=n^3
\]

而\(g,f*g\)的前缀和就是\(S(n,2),S(n,3)\),所以这个问题就解决了。最后列一下求和式:

\[F(n)=\sum_{i=1}^n(f*g)(i)-\sum_{i=2}^ng(i)F(\lfloor \frac ni\rfloor)\\
=\sum_{i=1}^ni^3-\sum_{i=2}^ni^2F(\lfloor \frac ni\rfloor)
\]

时间复杂度\(O(n^\frac 23+n^\frac 12)\)。话说这题数据真的水,我减号写成加号都有60分。

#include<bits/stdc++.h>
#define il inline
#define co const
template<class T>T read(){
T data=0,w=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(T&x) {return x=read<T>();}
typedef long long LL;
using namespace std; co int N=4641589;
int mod,i6;
int pri[N],tot,phi[N];
int add(int a,int b){
return (a+=b)>=mod?a-mod:a;
}
int mul(int a,int b){
return (LL)a*b%mod;
}
int fpow(int a,int b){
int ans=1;
for(;b;b>>=1,a=mul(a,a))
if(b&1) ans=mul(ans,a);
return ans;
}
void init(){
i6=fpow(6,mod-2);
pri[1]=phi[1]=1;
for(int i=2;i<N;++i){
if(!pri[i]) pri[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<N;++j){
pri[i*pri[j]]=1,phi[i*pri[j]]=phi[i]*phi[pri[j]];
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
}
for(int i=2;i<N;++i) phi[i]=add(phi[i-1],mul(phi[i],mul(i,i)));
}
int sum_s2(int n){
return mul(i6,mul(n,mul(n+1,2*n+1)));
}
int sum_s3(int n){
return n&1?mul(mul(n,(n+1)/2),mul(n,(n+1)/2)):mul(mul(n/2,n+1),mul(n/2,n+1));
}
map<LL,int> sf;
int sum_f(LL n){
if(n<N) return phi[n];
if(sf.count(n)) return sf[n];
int ans=sum_s3(n%mod);
for(LL l=2,r;l<=n;l=r+1){
r=n/(n/l);
ans=add(ans,mod-mul(add(sum_s2(r%mod),mod-sum_s2((l-1)%mod)),sum_f(n/l)));
}
return sf[n]=ans;
}
int solve(LL n){
int ans=0;
for(LL l=1,r;l<=n;l=r+1){
r=n/(n/l);
ans=add(ans,mul(add(sum_f(r),mod-sum_f(l-1)),sum_s3(n/l%mod)));
}
return ans;
}
int main(){
cerr<<(sizeof(pri)+sizeof(phi))/1024.0/1024<<endl;
read(mod);
init();
printf("%d\n",solve(read<LL>()));
return 0;
}

LG3768 简单的数学题的更多相关文章

  1. 【LG3768】简单的数学题

    [LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...

  2. 【数学】HPU--1037 一个简单的数学题

    1037: 一个简单的数学题 [数学] 时间限制: 1 Sec 内存限制: 128 MB提交: 259 解决: 41 统计 题目描述 小明想要知道$a^b$的值,但是这个值会非常的大. 所以退而求其次 ...

  3. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  4. luoguP3768 简单的数学题

    题目链接 luoguP3768 简单的数学题 题解 上面那个式子的最后一步,需要定理 用数学归纳法证明 \(S1=1^3=1^2\) \(S2=1^3+2^3=9=3^2=(1+2)^2\) \(S3 ...

  5. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  6. loj#6229 这是一道简单的数学题

    \(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书 ...

  7. 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛

    题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  ...

  8. P3768 【简单的数学题】

    P3768 [简单的数学题] \(Ans=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ijgcd(i,j)\) \(=\sum ^{n}_{i=1}\sum ^{n}_{j=1}ij\ ...

  9. NYOJ 330 一个简单的数学题【数学题】

    /* 题目大意:求解1/n; 解题思路:写一个输出小数的算法 关键点:怎样处理小数点循环输出 解题人:lingnichong 解题时间:2014-10-18 09:04:22 解题体会:输出小数的算法 ...

随机推荐

  1. Linux学习-基本命令2

    安装tree命令 yum -y install tree 测试 tree /tmp [root@wyx ~]# tree /tmp/ /tmp/ ├── anaconda.log ├── hsperf ...

  2. 面试官问你MySQL的优化,看这篇文章就够了

    作者:zhangqh segmentfault.com/a/1190000012155267 一.EXPLAIN 做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划. 下面来个简单的示例 ...

  3. Nmap脚本使用

    Nmap是主机扫描工具,他的图形化界面是Zenmap,分布式框架为Dnamp. Nmap可以完成以下任务: 主机探测 端口扫描 版本检测 系统检测 支持探测脚本的编写 Nmap在实际中应用场合如下: ...

  4. Python 爬取陈都灵百度图片

    Python 爬取陈都灵百度图片 标签(空格分隔): 随笔 今天意外发现了自己以前写的一篇爬虫脚本,爬取的是我的女神陈都灵,尝试运行了一下发现居然还能用.故把脚本贴出来分享一下. import req ...

  5. Python字符串的截取原理,下标的位置图示

    Python字符串截取时总是有些糊涂,从官网上找到一个图示,理解Python字符串是如何标记,的具体含义图示如下: +---+---+---+---+---+---+ | P | y | t | h ...

  6. 【Linux】Linux目录结构及详细介绍

    00. 目录 01. 常用目录介绍 /:根目录,位于Linux文件系统目录结构的顶层,一般根目录下只存放目录,不要存放文件,/etc./bin./dev./lib./sbin应该和根目录放置在一个分区 ...

  7. 解决unzip解压中文乱码问题

    使用 unzip XXX.zip 方式解压的时候会出现中文乱码 很多人推荐以下方式: 在windows执行命令,可显示字符集数字一般为936: # chcp // 解压时加上-O cp936,xxx为 ...

  8. quartz 定时器执行

    类存储job信息 public class JobInfo {//省略setter getter String jobName; String jobGroup; Class<? extends ...

  9. selenium的显示等待和隐式等待的区别

    什么是显示等待和隐式等待?显示等待就是有条件的等待隐式等待就是无条件的等待 隐式等待 当使用了隐式等待执行测试的时候,如果 WebDriver没有在 DOM中找到元素,将继续等待,超出设定时间后则抛出 ...

  10. Linux下Java变量

    一.JAVA_HOME.PATH.CLASSPATH详解 1.1.JAVA_HOME 指向jdk安装目录,该目录下有bin.lib目录.Eclipse/NetBeans/Tomcat等软件就是通过搜索 ...