Python爬取网页信息的步骤

以爬取英文名字网站(https://nameberry.com/)中每个名字的评论内容,包括英文名,用户名,评论的时间和评论的内容为例。

1、确认网址

在浏览器中输入初始网址,逐层查找链接,直到找到需要获取的内容。

在打开的界面中,点击鼠标右键,在弹出的对话框中,选择“检查”,则在界面会显示该网页的源代码,在具体内容处点击查找,可以定位到需要查找的内容的源码。

注意:代码显示的方式与浏览器有关,有些浏览器不支持显示源代码功能(360浏览器,谷歌浏览器,火狐浏览器等是支持显示源代码功能)

步骤图:

1)首页,获取A~Z的页面链接

2)名字链接页,获取每个字母中的名字链接(存在翻页情况)

3)名字内容页,获取每个名字的评论信息

2、编写测试代码

1)获取A~Z链接,在爬取网页信息时,为了减少网页的响应时间,可以根据已知的信息,自动生成对应的链接,这里采取自动生成A~Z之间的连接,以pandas的二维数组形式存储

 def get_url1():
urls=[]
# A,'B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'
a=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    #自动生成A~Z的链接
for i in a:
urls.append("https://nameberry.com/search/baby_names_starting_with/%s" %i)
dp=pd.DataFrame(urls)
dp.to_csv("A~Z_Link1.csv",mode="a",encoding='utf_8_sig')
    #循环用于在每个字母链接下,调用爬取名字链接的页面的函数,即函数嵌套
for j in urls:
get_pages_Html(j)
return urls

2)获取名字链接,根据网页源码分析出包含名字链接的标签,编写代码,名字链接用直接存储的方式存储,方便读取名字链接进行对名字的评论内容的获取

 #获取页数
def get_pages_Html(url1):
req = requests.get(url1)
soup=BeautifulSoup(req.text)
#异常处理,为解决页面不存在多页的问题,使用re正则表达式获取页面数
try:
lastpage = soup.find(class_="last").find("a")['href']
str1='{}'.format(lastpage)
b=re.findall('\\d+', str1 )
for page in b:
num=page
except:
num=1
get_pages(num,url1)
return num def get_pages(n,url):
pages=[]
for k in range(1,int(n)+1):
pages.append("{}?page={}".format(url,k))
dp=pd.DataFrame(pages)
dp.to_csv("NUM_pages_1.csv",mode="a",encoding='utf_8_sig')
#函数调用
for l in pages:
parse_HTML2(l)
return pages # 名字的链接,根据网页源码的标签,确定名字链接的位置
def parse_HTML2(url2):
try:
req = requests.get(url2)
req.encoding = req.apparent_encoding
soup = BeautifulSoup(req.text)
except:
dp=pd.DataFrame(url2)
dp.to_csv("Error_pages_1.csv",mode="a",encoding='utf_8_sig')
name_data_l=[]
error=[]
li_list = soup.find_all('li',class_="Listing-name pt-15 pb-15 bdb-gray-light w-100pct flex border-highlight")
try:
for li in li_list:
nameList=li.find('a',class_='flex-1')['href']
name_data_l.append('https://nameberry.com/'+nameList)
time.sleep(1)
cun(name_data_l,'Name_List_1')
except:
dp=pd.DataFrame(name_data_l)
dp.to_csv("Error_Name_List_1.csv",mode="a",encoding='utf_8_sig')
# cun(url2,'Error_link_Q')
# dp=pd.DataFrame(name_data_l)
# dp.to_csv("Name_List.csv",mode="a",encoding='utf_8_sig')
# for i in name_data_l:
# parse_HTML3(i)
return name_data_l

3)获取名字评论的内容,采用字典形式写入文件

 # 名字里的内容
def parse_HTML3(url3):
count=0
req = requests.get(url3)
req.encoding = req.apparent_encoding
soup = BeautifulSoup(req.text)
error=[]
try:
Name=soup.find('h1',class_='first-header').find("a").get_text().replace(",","").replace("\n","")
except:
error.append(url3)
cun(error,"Error_Link_Comment")
li_list = soup.find_all('div',class_="comment")
for li in li_list:
Title=li.find("h4").get_text().replace(",","").replace("\n","")
Time=li.find("p",class_='meta').get_text().replace(",","").replace("\n","")
Comments=li.find("div",class_='comment-text').get_text().replace(",","").replace("\n","")
dic2={
"Name":Name,
"Title":Title,
"Time":Time,
"Comments":Comments
}
time.sleep(1)
count=count+1
save_to_csv(dic2,"Name_data_comment")
print(count)
return 1

3、测试代码

1)代码编写完成后,具体的函数调用逻辑,获取链接时,为直接的函数嵌套,获取内容时,为从文件中读取出名字链接,在获取名字的评论内容。避免因为逐层访问,造成访问网页超时,出现异常。

如图:

2)测试结果

 4、小结

在爬取网页内容时,要先分析网页源码,再进行编码和调试,遵从爬虫协议(严重者会被封号),在爬取的数据量非常大时,可以设置顺序部分请求(一部分的进行爬取网页内容)。

总之,爬虫有风险,测试需谨慎!!!

Python爬取网页信息的更多相关文章

  1. [python] 常用正则表达式爬取网页信息及分析HTML标签总结【转】

    [python] 常用正则表达式爬取网页信息及分析HTML标签总结 转http://blog.csdn.net/Eastmount/article/details/51082253 标签: pytho ...

  2. 常用正则表达式爬取网页信息及HTML分析总结

    Python爬取网页信息时,经常使用的正则表达式及方法. 1.获取<tr></tr>标签之间内容 2.获取<a href..></a>超链接之间内容 3 ...

  3. python学习之——爬取网页信息

    爬取网页信息 说明:正则表达式有待学习,之后完善此功能 #encoding=utf-8 import urllib import re import os #获取网络数据到指定文件 def getHt ...

  4. python爬取网页的通用代码框架

    python爬取网页的通用代码框架: def getHTMLText(url):#参数code缺省值为‘utf-8’(编码方式) try: r=requests.get(url,timeout=30) ...

  5. Python爬取招聘信息,并且存储到MySQL数据库中

    前面一篇文章主要讲述,如何通过Python爬取招聘信息,且爬取的日期为前一天的,同时将爬取的内容保存到数据库中:这篇文章主要讲述如何将python文件压缩成exe可执行文件,供后面的操作. 这系列文章 ...

  6. 如何使用python爬取网页动态数据

    我们在使用python爬取网页数据的时候,会遇到页面的数据是通过js脚本动态加载的情况,这时候我们就得模拟接口请求信息,根据接口返回结果来获取我们想要的数据. 以某电影网站为例:我们要获取到电影名称以 ...

  7. python爬取网页文本、图片

    从网页爬取文本信息: eg:从http://computer.swu.edu.cn/s/computer/kxyj2xsky/中爬取讲座信息(讲座时间和讲座名称) 注:如果要爬取的内容是多页的话,网址 ...

  8. python爬取酒店信息练习

    爬取酒店信息,首先知道要用到那些库.本次使用request库区获取网页,使用bs4来解析网页,使用selenium来进行模拟浏览. 本次要爬取的美团网的蚌埠酒店信息及其评价.爬取的网址为“http:/ ...

  9. python 嵌套爬取网页信息

    当需要的信息要经过两个链接才能打开的时候,就需要用到嵌套爬取. 比如要爬取起点中文网排行榜的小说简介,找到榜单网址:https://www.qidian.com/all?orderId=&st ...

随机推荐

  1. torch7安装的坑

    https://github.com/torch/torch7/issues/1086 sudo su export TORCH_NVCC_FLAGS="-D__CUDA_NO_HALF_O ...

  2. Springboot采用hibernate-validate验证请求参数

    在springboot项目使用hibernate-validate对请求参数添加注解进行校验 常用注解 @Null,标注的属性值必须为空 @NotNull,标注的属性值不能为空 @AssertTrue ...

  3. Redhat7.6Linux版本下,在Oracle VM VirtualBox下hostonly下IP地址配置

    安装配置Linux的Redhat7.6教程见:https://www.cnblogs.com/xuzhaoyang/p/11264563.html 然后,配置完之后,我们开始配置IP地址,配置IP地址 ...

  4. windows 开始→运行→命令集锦

    windows 开始→运行→命令集锦 来源于网络,侵权请通知我删除 命令 说明 vwinver 检查Windows版本 wmimgmt.msc 打开windows管理体系结构(WMI) wupdmgr ...

  5. R学习笔记1 介绍R的使用

    R脚本的一次执行叫做一个会话(Session),可以通过函数quit()退出当前的会话 quit(save = "default", status = 0, runLast = T ...

  6. Node模块化

    Node.js是一个能够在服务器端运行JavaScript的开放源代码.跨平台JavaScript运行环境.Node是对ES标准一个实现,也是一个JS引擎.与传统服务器不同是Node的服务器是单线程的 ...

  7. Jekyll自动检测代码更新

    Jekyll自动检测代码更新 jekyll是一个静态博客生成软件, 我们把代码放在一个仓库里, 只要远程代码更新, 我们就从把它拉到自己的服务器, 然后重新启动jekyll. cd /root/blo ...

  8. 扩展JS

    //JS的扩展方法: 1 定义类静态方法扩展 2 定义类对象方法扩展            var aClass = function(){} //1 定义这个类的静态方法            aC ...

  9. python PIL图像处理库

    1. Introduction PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. ...

  10. iOS自动签名网站

    node.js作为服务端,调用shell脚本进行iOS包重签名. 需要安装:nodejs ,forever 安装环境: 安装nodejs 安装forever: npm install forever ...