题目

洛谷传送门

题解

就是这道题搞我退役考场上写了n^2 64分,结果爆成8-12分。直接GG。

考场上想到正解的写法被自己否决了

题解传送门(看到这道送我退役的题目⑧太想写题解)

六行O(n2)O(n^2)O(n2)DP 888888分代码

	for(int i = 1; i <= n; ++i) a[i] += a[i-1];
f[0] = d[0] = 0;
for(int i = 1; i <= n; ++i)
for(int j = i; j >= 1; --j) {
if(a[i]-a[j-1]<d[j-1]) continue;
d[i] = a[i]-a[j-1], f[i] = f[j-1] + d[i]*d[i];
break;
}
printf("%lld\n", f[n]);

同样六行O(n)O(n)O(n)DP 100100100分代码

#include <bits/stdc++.h>
using namespace std;
template<class T>inline void read(T &x) {
char ch; while(!isdigit(ch=getchar()));
for(x=ch-'0';isdigit(ch=getchar());x=x*10+ch-'0');
}
typedef long long LL;
const int MAXN = 40000005;
const int MOD = 1073741824;
int n, ty, stk[50], indx;
LL a[MAXN];
int q[MAXN], pre[MAXN], s, t; int main () {
read(n), read(ty);
if(!ty) for(int i = 1; i <= n; ++i) read(a[i]);
else {
int x, y, z, m;
read(x), read(y), read(z), read(a[1]), read(a[2]), read(m);
for(int i = 3; i <= n; ++i) a[i] = (x*a[i-1] + y*a[i-2] + z) % MOD;
for(int i = 1, p, l, r, j = 1; i <= m; ++i) {
read(p), read(l), read(r);
while(j <= p) a[j] = a[j] % (r-l+1) + l, ++j;
}
}
for(int i = 1; i <= n; ++i) a[i] += a[i-1];
q[s=t=0] = 0;
for(int i = 1; i <= n; ++i) {
while(s < t && a[q[s+1]]-a[pre[q[s+1]]]+a[q[s+1]] <= a[i]) ++s;
pre[i] = q[s];
while(s < t && a[q[t]]-a[pre[q[t]]]+a[q[t]] >= a[i]-a[pre[i]]+a[i]) --t;
q[++t] = i;
}
__int128 ans = 0, tmp; int now = n;
while(now) { tmp = a[now]-a[pre[now]]; ans += tmp*tmp; now = pre[now]; }
while(ans) { stk[++indx] = ans%10; ans/=10; }
while(indx) putchar('0'+stk[indx--]); puts("");
}

水题送我退役。

粗鄙之语

CSP2019 D2T2 划分 (单调队列DP)的更多相关文章

  1. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  2. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  3. zstu 4237 马里奥的求救——(单调队列DP)

    题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...

  4. 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP

    1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...

  5. 【CSP-S 2019】【洛谷P5665】划分【单调队列dp】

    前言 \(csp\)时发现自己做过类似这道题的题目 : P4954 [USACO09Open] Tower of Hay 干草塔 然后回忆了差不多\(15min\)才想出来... 然后就敲了\(88p ...

  6. vijos P1243 生产产品(单调队列+DP)

      P1243生产产品   描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...

  7. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  8. codeforces 1077F2. Pictures with Kittens (hard version)单调队列+dp

    被队友催着上(xun)分(lian),div3挑战一场蓝,大号给基佬紫了,结果从D开始他开始疯狂教我做人??表演如何AKdiv3???? 比赛场上:A 2 分钟,B题蜜汁乱计数,结果想得绕进去了20多 ...

  9. 【LOJ#10180】烽火传递 单调队列+dp

    题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...

  10. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

随机推荐

  1. Java开发笔记(一百一十一)POST方式的HTTP调用

    前面介绍了GET方式的HTTP调用,该方式主要用于向服务器索取数据,不管是字符串形式的应答报文,还是二进制形式的网络文件,都属于服务器提供的信息.当然调用方也可以向服务地址传送请求参数,除了通过连接对 ...

  2. 【NOIP2017】宝藏 题解(状压DP)

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中 ...

  3. VirtualBox导入OVA文件文档教程

    1 2 修改框住的路径,最好不要在C盘 3 取消检查更新 4 5 6 7 8 9 10 11 等待加载完成:加载完成后 OVA文件导入成功 作者:含笑半步颠√ 博客链接:https://www.cnb ...

  4. quartz 定时器执行

    类存储job信息 public class JobInfo {//省略setter getter String jobName; String jobGroup; Class<? extends ...

  5. SQL Server 2012使用日常

    SQL Server 2012个人使用日常(持续完善中) 1.查询筛选 2.修改数据

  6. java之struts2的数据处理

    这里的数据处理,指的是页面上的数据与Action中的数据的处理. struts2中有3种方式来接收请求提交的数据.分别是:属性驱动方式.对象驱动方式.模型驱动方式 1. 属性驱动方式 要求页面中的表单 ...

  7. NEST health与settings

    /// <summary> /// 创建Idx,并设置分片和副本 /// </summary> public void Settings() { var response = ...

  8. Vue的11个生命周期函数的用法

    实例的生命周期函数(官方11个):beforeCreate:在实例部分(事件/生命周期)初始化完成之后调用.created:在完成外部的注入/双向的绑定等的初始化之后调用.beforeMount:在页 ...

  9. 【spark】spark应用(分布式估算圆周率+基于Spark MLlib的贷款风险预测)

    注:本章不涉及spark和scala原理的探讨,详情见其他随笔 一.分布式估算圆周率 计算原理:假设正方形的面积S等于x²,而正方形的内切圆的面积C等于Pi×(x/2)²,因此圆面积与正方形面积之比C ...

  10. MySQL Backup--Xtrabackup备份异常(MySQL Server has gone away)

    错误场景MySQL 版本:5.7.24XtraBackup 版本:2.4.8CentOS 版本:6.5 MySQL需要新增一个从库,为避免XtraBackup备份影响生产,选择在从库上进行备份,备份脚 ...