Saving Beans

Time Limit: 3000 MS Memory Limit: 32768 K

Problem Description

Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

Input

The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

Output

You should output the answer modulo p.

Sample Input

2

1 2 5

2 1 5

Sample Output

3

3

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.

The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:

put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

题意:

由n个不同的盒子,在每个盒子中放一些球(可以不放),使得总球数<=m,求方案数模p后的值.

1<=n,m<=10^9,1< p < 10^5,保证p是素数.

题解(第一次用数学编辑器2333)

#include<iostream>
#include<cstdio>
#define MAXN 100001
#define LL long long
using namespace std;
LL M[MAXN];
LL mi(LL a,LL b,LL p)
{
LL tot=1;
while(b)
{
if(b&1) tot=tot*a%p;
a=a*a%p;
b>>=1;
}
return tot;
}
LL C(LL n,LL m,LL p)
{
if(m>n) return 0;
LL tot=1;
return M[n]*mi(M[n-m],p-2,p)%p*mi(M[m],p-2,p)%p;
}
LL lucus(LL n,LL m,LL p)
{
if(!m) return 1;
return lucus(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main()
{
LL n,m,p,t;
cin>>t;
while(t--)
{
cin>>n>>m>>p;
M[0]=1;
for(int i=1;i<=p;i++) M[i]=M[i-1]*i%p;
printf("%lld\n",lucus(n+m,m,p));
}
return 0;
}

Hdu 3037 Saving Beans(Lucus定理+乘法逆元)的更多相关文章

  1. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)

    Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...

随机推荐

  1. Go ---- defer 和 return 执行的先后顺序

    Go 中 defer 和 return 执行的先后顺序 多个defer的执行顺序为“后进先出”: defer.return.返回值三者的执行逻辑应该是:return最先执行,return负责将结果写入 ...

  2. Compact Middle Packages

    idea工具进行Java开发,在项目视图,默认是将package层级以简洁显示的,如下图: 但有时,我们希望不要使用这种模式,比如:某个父包下,有一个子包,想在父包下,增加一个包,可是来时增加在子包下 ...

  3. 浮动IP地址(Float IP)与 ARP欺骗技术

    浮动IP地址: 一个网卡是可以添加多个IP的. 就是多个主机工作在 同一个集群中,即两台主机以上.每台机器除了自己的实IP外,会设置一个浮动IP,浮动IP与主机的服务(HTTP服务/邮箱服务)绑在一起 ...

  4. Mybatis中使用association及collection进行一对多双向关联示例(含XML版与注解版)

    XML版本: 实体类: package com.sunwii.mybatis.bean; import java.util.ArrayList; import java.util.List; impo ...

  5. HTML学习摘要1

    在http://www.w3school.com.cn/ 学习前端知识,利用暑假,自主学习以拓展知识面 DAY 1 HTML 不是一种编程语言,而是一种标记语言 (markup language) 标 ...

  6. JAVA项目之增删改查

    public class ProductDao { // 查询所有商品 // BeanListHandler查询所有商品 public List<Product> getAll() thr ...

  7. Python学习笔记-字符串与注释

    OSX从Pthon 2.7升级到3.8 1,官网下载最新安装包安装 2,执行认证文件command 3,执行设置path command 4,设置默认python 在terminal里运行open   ...

  8. 【DATAGUARD】物理dg配置客户端无缝切换 (八.1)--Data Guard Broker 的配置

    [DATAGUARD]物理dg配置客户端无缝切换 (八.1)--Data Guard Broker 的配置 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读 各位技 ...

  9. [CAN].CAN总线详解

    转自:https://blog.csdn.net/cheatscat/article/details/82886889 CAN(Controller Area Network)总线协议是由 BOSCH ...

  10. 详解Linux系统中10个最危险的命令

    概述 大多数的朋友都是主要用的windows系统,基本用鼠标就可以完成所有的操作,但是在Linux系统中很多都是键盘+命令操作电脑的,Linux命令行使用很有趣,但有时候也很危险,尤其是在你不确定你自 ...