Schnorr签名介绍

来源 https://panzhibiao.com/2019/02/28/schnorr-sigature/

https://github.com/bitcoin/bitcoin/
https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Schnorr

Schnorr签名算法是由德国数学家、密码学家Claus Schnorr提出。并于1990年申请了专利,U.S. Patent 4,995,082,该专利与2008年2月失效。目前该算法可以自由使用。

Schnorr签名算法几乎在各个层面均优于比特币现有的签名算法ECDSA:性能,安全,体积,扩展性等方面。

Schnorr Sig可以与ECDSA使用同一个椭圆曲线:secp256k1 curve,升级起来的改动非常小。

原理

我们定义几个变量:

  • G:椭圆曲线。
  • m:待签名的数据,通常是一个32字节的哈希值。
  • x:私钥。P = xG,P为x对应的公钥。
  • H():哈希函数。
    • 示例:写法H(m || R || P)可理解为:将m, R, P三个字段拼接在一起然后再做哈希运算。

生成签名

签名者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, x-私钥。

  1. 选择一个随机数k, 令 R = kG
  2. 令 s = k + H(m || R || P)*x

那么,公钥P对消息m的签名就是:(R, s),这一对值即为Schnorr签名。

验证签名

验证者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, P-公钥,(R, s)-Schnorr签名。验证如下等式:

sG = R + H(m || R || P)P

若等式成立,则可证明签名合法。

我们推演一下,此过程包含了一个极其重要的理论:椭圆曲线无法进行除法运算。

  1. s值的定义:s = k + H(m || R || P)*x,等式两边都乘以椭圆曲线G,则有:
  2. sG = kG + H(m || R || P)*x*G,又因R = kG, P = xG,则有:
  3. sG = R + H(m || R || P)P,椭圆曲线无法进行除法运算,所以第3步的等式,无法向前反推出第1步,就不会暴露k值以及x私钥。同时,也完成了等式验证。

组签, Group Signature

一组公钥,N把,签名后得到N个签名。这个N个签名是可以相加的,最终得到一个签名。这个签名的验证通过,则代表N把公钥的签名全部验证通过。

有:

  • 椭圆曲线:G
  • 待签名的数据:m
  • 哈希函数:H()
  • 私钥:x1,x2,公钥:P1=x1*G, P2=x2*G
  • 随机数:k1, k2,并有 R1=k1*G, R2=k2*G
  • 组公钥:P = P1 + P2

则有:

  • 私钥x1和x2的签名为:(R1, s1), (R2, s2)。
  • 两个签名相加得到组签名:(R, s)。其中:R = R1 + R2, s = s1 + s2

推演过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1. 令 R = R1 + R2, s = s1 + s2

2. 已知:s1 = k1 + H(m || R || P)*x1,s2 = k2 + H(m || R || P)*x2

3. s = s1 + s2
= k1 + H(m || R || P)*x1 +
k2 + H(m || R || P)*x2
= (k1 + k2) + H(m || R || P)(x1 + x2) 4. 两边同时乘以G,则有:
sG = (k1 + k2)G + H(m || R || P)(x1 + x2)G
= (k1G + k2G) + H(m || R || P)(x1G + x2G)
= (R1 + R2) + H(m || R || P)(P1 + P2)
= R + H(m || R || P)P 5. 完成证明,并从两个合作方推演至N个合作方

组公钥(Group Key),是N把公钥进行相加后的值,又称聚合公钥(Aggregation Key)。需要指出的是,参与方需要先相互交换公钥和R值,然后再进行各自的签名。

应用

若使用在比特币上,相比ECDSA会有一些额外的显著优势:

  • 更安全。目前Schnorr签名有安全证明,而ECDSA目前并没有类似的证明。
  • 无延展性困扰。ECDSA签名是可延展性的,第三方无需知道私钥,可以直接修改既有签名,依然能够保持该签名对于此交易是有效的。比特币一直存在延展性攻击,直到SegWit激活后才修复,前提是使用segwit交易,而不是传统交易。BIP62 和 BIP66 对此有详细描述。
  • 线性。Schnorr签名算法是线性的!这点非常牛逼,基于这点可衍生出许多应用。例如,N个公钥进行签名,采用ECDSA的话,则有N个签名,验证同样需要做N次。若使用Schnorr,由于线性特性,则可以进行签名叠加,仅保留最终的叠加签名。例如同一个交易无论输入数量多少,其均可叠加为一个签名,一次验证即可。以及GMaxwell提出的Taproot/Grafroot也是基于其线性特性。

Q&A

Q: Schnorr签名是否可以用在m of n多重签名上?
A: 当然可以。多重签名只是m of n的签名数量的模式。与签名算法无关。

Q: Schnorr的组签名特性是否可以做或模拟出m of n式的签名?
A: 无法做到。组内有N把公钥,则必须对应有N个签名,缺一不可。每个人在生成签名的时候,在哈希函数里都代入的都是组公钥P。

Q: 签名机制的安全性如何衡量?
A: 主要取决于两个:1. 签名算法本身 2. 椭圆曲线。目前,Schnorr与ECDSA都用的是曲线secp256k1,这个层面一样。至于签名算法本身安全性,Schnorr目前有安全证明,安全优于ECDSA。


参考:

==================== End

Schnorr签名介绍的更多相关文章

  1. android打包签名介绍

    Keytool 是一个有效的安全钥匙和证书的管理工具. Java 中的 keytool.exe (位于 JDK\Bin 目录下)可以用来创建数字证书,所有的数字证书是以一条一条(采用别名区别)的形式存 ...

  2. dll强签名的由来和作用

    C# dll强签名介绍 之前基本没有这个概念,直到有一天我们的dll被反编译了,导致我们的代码基本上被看到了,才想起来要保护dll的安全性,因为C#语言的在编译过程中会产生中间语言导致dll很容易被反 ...

  3. openssl之EVP系列之12---EVP_Seal系列函数介绍

    openssl之EVP系列之12---EVP_Seal系列函数介绍     ---依据openssl doc/crypto/EVP_SealInit.pod翻译和自己的理解写成     (作者:Dra ...

  4. BLS签名算法

    前言 [失踪人口回归 (*/ω\*)] 真的好久好久没有更新了,因为自己也还在找方向,但还是把新学的知识记录在博客里.今天要介绍的是BLS签名算法. 一.BLS签名算法简介 BLS签名算法[1]是由斯 ...

  5. RFC4035笔记

    章 节 标题 说明 补充说明 支持级别 1 介绍 1.定义DNSSEC协议修改点2.定义以下概念:已签名域(signed zone)和域签名的要求列表3.描述权威域名服务器为了处理签名域的行为变化4. ...

  6. 【转】 Android 开发 之 JNI入门 - NDK从入门到精通

    原文网址:http://blog.csdn.net/shulianghan/article/details/18964835 NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub  ...

  7. android学习经常使用的数据文件夹

    android工程实践 1.仿360一键清理实现(一) "一键清理"是一个桌面图标,点击图标后,显示一个视图.进行清理动画.之后显示清理了几个进程,释放了多少M内存.点击" ...

  8. 【Android 应用开发】Android 开发 之 JNI入门 - NDK从入门到精通

    NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub - https://github.com/han1202012/NDKHelloworld.git -- Java传递参数给C ...

  9. Android 新一代多渠道打包神器

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:李涛 ApkChannelPackage是一种快速多渠道打包工具,同时支持基于V1签名和V2签名进行多渠 ...

随机推荐

  1. Nginx Rewrite相关功能-rewrite指令

    Nginx Rewrite相关功能-rewrite指令 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  2. window开机启动

    C:\Users\sunyues\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup 再次文件夹下写脚本就可 @echo off ...

  3. xadmin引入django-rest-framework

    一.安装: pip install djangorestframework 安装djangorestframework库 https://github.com/encode/django-rest-f ...

  4. JMeter5.1开发http协议接口之json

    信息头指定是json 传json 包含传token,请参考:https://www.cnblogs.com/uncleyong/p/11668665.html

  5. vector、ArryList、LinkedList的区别与联系

    vector.ArryList.LinkedList的区别与联系 vectory类:底层 采用数组结构算法,使用了线程锁(synchronized),线程安全,但是性能相对ArryList比较低. A ...

  6. 07-numpy-笔记-join

    字符串.join(字符串序列) 一目了然: #!/usr/bin/python # -*- coding: UTF-8 -*- str = "-"; seq = ("a& ...

  7. ElementUI_NodeJS环境搭建

    ElementUI简介 我们学习VUE,知道它的核心思想式组件和数据驱动,但是每一个组件都需要自己编写模板,样式,添加事件,数据等是非常麻烦的, 所以饿了吗推出了基于VUE2.0的组件库,它的名称叫做 ...

  8. 回溯法 | 图的m着色问题

    学习链接:算法 图的M着色问题 虽然今早9点才醒来,10点才来教室,但是coding得很高效.吃个早餐,拉个粑粑的时间,就把算法书上的[图的m着色]问题看明白了,大脑里也形成了解决问题的框架. 其实这 ...

  9. jQuery(JavaScript代码库)——dialog对话框

    配置对话框: $("#add-user-modal").dialog({ autoOpen : false, //这个属性为true的时候dialog被调用的时候自动打开dialo ...

  10. prometheus、node_exporter、cAdvisor常用参数

    本节将介绍一下我在使用过程中用到的promethues.node_exporter.cAdvisor的常用参数,做一个总结 一.prometheus prometheus分为容器安装和二进制文件安装, ...