Schnorr签名介绍

来源 https://panzhibiao.com/2019/02/28/schnorr-sigature/

https://github.com/bitcoin/bitcoin/
https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Schnorr

Schnorr签名算法是由德国数学家、密码学家Claus Schnorr提出。并于1990年申请了专利,U.S. Patent 4,995,082,该专利与2008年2月失效。目前该算法可以自由使用。

Schnorr签名算法几乎在各个层面均优于比特币现有的签名算法ECDSA:性能,安全,体积,扩展性等方面。

Schnorr Sig可以与ECDSA使用同一个椭圆曲线:secp256k1 curve,升级起来的改动非常小。

原理

我们定义几个变量:

  • G:椭圆曲线。
  • m:待签名的数据,通常是一个32字节的哈希值。
  • x:私钥。P = xG,P为x对应的公钥。
  • H():哈希函数。
    • 示例:写法H(m || R || P)可理解为:将m, R, P三个字段拼接在一起然后再做哈希运算。

生成签名

签名者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, x-私钥。

  1. 选择一个随机数k, 令 R = kG
  2. 令 s = k + H(m || R || P)*x

那么,公钥P对消息m的签名就是:(R, s),这一对值即为Schnorr签名。

验证签名

验证者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, P-公钥,(R, s)-Schnorr签名。验证如下等式:

sG = R + H(m || R || P)P

若等式成立,则可证明签名合法。

我们推演一下,此过程包含了一个极其重要的理论:椭圆曲线无法进行除法运算。

  1. s值的定义:s = k + H(m || R || P)*x,等式两边都乘以椭圆曲线G,则有:
  2. sG = kG + H(m || R || P)*x*G,又因R = kG, P = xG,则有:
  3. sG = R + H(m || R || P)P,椭圆曲线无法进行除法运算,所以第3步的等式,无法向前反推出第1步,就不会暴露k值以及x私钥。同时,也完成了等式验证。

组签, Group Signature

一组公钥,N把,签名后得到N个签名。这个N个签名是可以相加的,最终得到一个签名。这个签名的验证通过,则代表N把公钥的签名全部验证通过。

有:

  • 椭圆曲线:G
  • 待签名的数据:m
  • 哈希函数:H()
  • 私钥:x1,x2,公钥:P1=x1*G, P2=x2*G
  • 随机数:k1, k2,并有 R1=k1*G, R2=k2*G
  • 组公钥:P = P1 + P2

则有:

  • 私钥x1和x2的签名为:(R1, s1), (R2, s2)。
  • 两个签名相加得到组签名:(R, s)。其中:R = R1 + R2, s = s1 + s2

推演过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1. 令 R = R1 + R2, s = s1 + s2

2. 已知:s1 = k1 + H(m || R || P)*x1,s2 = k2 + H(m || R || P)*x2

3. s = s1 + s2
= k1 + H(m || R || P)*x1 +
k2 + H(m || R || P)*x2
= (k1 + k2) + H(m || R || P)(x1 + x2) 4. 两边同时乘以G,则有:
sG = (k1 + k2)G + H(m || R || P)(x1 + x2)G
= (k1G + k2G) + H(m || R || P)(x1G + x2G)
= (R1 + R2) + H(m || R || P)(P1 + P2)
= R + H(m || R || P)P 5. 完成证明,并从两个合作方推演至N个合作方

组公钥(Group Key),是N把公钥进行相加后的值,又称聚合公钥(Aggregation Key)。需要指出的是,参与方需要先相互交换公钥和R值,然后再进行各自的签名。

应用

若使用在比特币上,相比ECDSA会有一些额外的显著优势:

  • 更安全。目前Schnorr签名有安全证明,而ECDSA目前并没有类似的证明。
  • 无延展性困扰。ECDSA签名是可延展性的,第三方无需知道私钥,可以直接修改既有签名,依然能够保持该签名对于此交易是有效的。比特币一直存在延展性攻击,直到SegWit激活后才修复,前提是使用segwit交易,而不是传统交易。BIP62 和 BIP66 对此有详细描述。
  • 线性。Schnorr签名算法是线性的!这点非常牛逼,基于这点可衍生出许多应用。例如,N个公钥进行签名,采用ECDSA的话,则有N个签名,验证同样需要做N次。若使用Schnorr,由于线性特性,则可以进行签名叠加,仅保留最终的叠加签名。例如同一个交易无论输入数量多少,其均可叠加为一个签名,一次验证即可。以及GMaxwell提出的Taproot/Grafroot也是基于其线性特性。

Q&A

Q: Schnorr签名是否可以用在m of n多重签名上?
A: 当然可以。多重签名只是m of n的签名数量的模式。与签名算法无关。

Q: Schnorr的组签名特性是否可以做或模拟出m of n式的签名?
A: 无法做到。组内有N把公钥,则必须对应有N个签名,缺一不可。每个人在生成签名的时候,在哈希函数里都代入的都是组公钥P。

Q: 签名机制的安全性如何衡量?
A: 主要取决于两个:1. 签名算法本身 2. 椭圆曲线。目前,Schnorr与ECDSA都用的是曲线secp256k1,这个层面一样。至于签名算法本身安全性,Schnorr目前有安全证明,安全优于ECDSA。


参考:

==================== End

Schnorr签名介绍的更多相关文章

  1. android打包签名介绍

    Keytool 是一个有效的安全钥匙和证书的管理工具. Java 中的 keytool.exe (位于 JDK\Bin 目录下)可以用来创建数字证书,所有的数字证书是以一条一条(采用别名区别)的形式存 ...

  2. dll强签名的由来和作用

    C# dll强签名介绍 之前基本没有这个概念,直到有一天我们的dll被反编译了,导致我们的代码基本上被看到了,才想起来要保护dll的安全性,因为C#语言的在编译过程中会产生中间语言导致dll很容易被反 ...

  3. openssl之EVP系列之12---EVP_Seal系列函数介绍

    openssl之EVP系列之12---EVP_Seal系列函数介绍     ---依据openssl doc/crypto/EVP_SealInit.pod翻译和自己的理解写成     (作者:Dra ...

  4. BLS签名算法

    前言 [失踪人口回归 (*/ω\*)] 真的好久好久没有更新了,因为自己也还在找方向,但还是把新学的知识记录在博客里.今天要介绍的是BLS签名算法. 一.BLS签名算法简介 BLS签名算法[1]是由斯 ...

  5. RFC4035笔记

    章 节 标题 说明 补充说明 支持级别 1 介绍 1.定义DNSSEC协议修改点2.定义以下概念:已签名域(signed zone)和域签名的要求列表3.描述权威域名服务器为了处理签名域的行为变化4. ...

  6. 【转】 Android 开发 之 JNI入门 - NDK从入门到精通

    原文网址:http://blog.csdn.net/shulianghan/article/details/18964835 NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub  ...

  7. android学习经常使用的数据文件夹

    android工程实践 1.仿360一键清理实现(一) "一键清理"是一个桌面图标,点击图标后,显示一个视图.进行清理动画.之后显示清理了几个进程,释放了多少M内存.点击" ...

  8. 【Android 应用开发】Android 开发 之 JNI入门 - NDK从入门到精通

    NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub - https://github.com/han1202012/NDKHelloworld.git -- Java传递参数给C ...

  9. Android 新一代多渠道打包神器

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:李涛 ApkChannelPackage是一种快速多渠道打包工具,同时支持基于V1签名和V2签名进行多渠 ...

随机推荐

  1. dapi 基于Django的轻量级测试平台二 前端页面

    QQ群: GitHub:https://github.com/yjlch1016/dapi 一.登录页login.html: 二.首页home.html: 三.产品线列表页product.html: ...

  2. flask实战-个人博客-编写博客前台

    编写博客前台 博客前台需要开放给所有用户,这里包括显示文章列表.博客信息.文章内容和评论等功能功能. 分页显示文章列表 为了在主页显示文章列表,我们要先在渲染主页模板的index视图的数据库中获取所有 ...

  3. Nginx——请求head被过滤

    前言 nginx代理服务器,app发出的请求头被直接过滤了,当时想到nginx会自动过滤掉带有_的请求头信息,所以直接改了Nginx的配置当然也可以将app的request中header中的_改为- ...

  4. wordpress怎么用AMP加速器呢

    AMP项目(Accelerated Mobile Pages)是一个开放源代码计划,旨在为所有人打造更好的网络体验.借助该项目,用户可以打造出在各种设备和分发平台上都能始终如一地快速加载且效果出色的精 ...

  5. SVG学习(三)

    _ 阅读目录 一:在SVG中使用样式 二:分组和引用对象 1. 理解 <g> 元素 2. 理解 <use> 元素 3. 理解 <defs> 元素 4. 理解< ...

  6. Qt常用类——QFrame类与QWidge类

    QFrame与QWidget的区别: QFrame是基本控件的基类,QWidget是QFrame基类. QWidget类是所有用户界面对象的基类. Widget是用户界面的基本单元:它从窗口系统接收鼠 ...

  7. docker 部署 jenkins

    建议使用的Docker映像是jenkinsci/blueocean image(来自 the Docker Hub repository). 该镜像包含当前的长期支持 (LTS) 的Jenkins版本 ...

  8. nginx 日志之 access_log分割

    如果任由访问日志写下去,日志文件会变得越来越大,甚至是写满磁盘. 所以,我们需要想办法把日志做切割,比如每天生成一个新的日志,旧的日志按规定时间删除即可. 实现日志切割可以通过写shell脚本或者系统 ...

  9. python实现两个两个的翻转字符串

    #!/usr/bin/python str = "ABCDEFGH" print(str) lenstr=len(str) print(lenstr) ss='' for i in ...

  10. java基础 类 & 继承

    类 在Java中,类文件是以.java为后缀的代码文件,在每个类文件中可以有多个类,但是最多只允许出现一个public类,当有public类的时候,类文件的名称必须和public类的名称相同,若不存在 ...