Schnorr签名介绍

来源 https://panzhibiao.com/2019/02/28/schnorr-sigature/

https://github.com/bitcoin/bitcoin/
https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Schnorr

Schnorr签名算法是由德国数学家、密码学家Claus Schnorr提出。并于1990年申请了专利,U.S. Patent 4,995,082,该专利与2008年2月失效。目前该算法可以自由使用。

Schnorr签名算法几乎在各个层面均优于比特币现有的签名算法ECDSA:性能,安全,体积,扩展性等方面。

Schnorr Sig可以与ECDSA使用同一个椭圆曲线:secp256k1 curve,升级起来的改动非常小。

原理

我们定义几个变量:

  • G:椭圆曲线。
  • m:待签名的数据,通常是一个32字节的哈希值。
  • x:私钥。P = xG,P为x对应的公钥。
  • H():哈希函数。
    • 示例:写法H(m || R || P)可理解为:将m, R, P三个字段拼接在一起然后再做哈希运算。

生成签名

签名者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, x-私钥。

  1. 选择一个随机数k, 令 R = kG
  2. 令 s = k + H(m || R || P)*x

那么,公钥P对消息m的签名就是:(R, s),这一对值即为Schnorr签名。

验证签名

验证者已知的是:G-椭圆曲线, H()-哈希函数,m-待签名消息, P-公钥,(R, s)-Schnorr签名。验证如下等式:

sG = R + H(m || R || P)P

若等式成立,则可证明签名合法。

我们推演一下,此过程包含了一个极其重要的理论:椭圆曲线无法进行除法运算。

  1. s值的定义:s = k + H(m || R || P)*x,等式两边都乘以椭圆曲线G,则有:
  2. sG = kG + H(m || R || P)*x*G,又因R = kG, P = xG,则有:
  3. sG = R + H(m || R || P)P,椭圆曲线无法进行除法运算,所以第3步的等式,无法向前反推出第1步,就不会暴露k值以及x私钥。同时,也完成了等式验证。

组签, Group Signature

一组公钥,N把,签名后得到N个签名。这个N个签名是可以相加的,最终得到一个签名。这个签名的验证通过,则代表N把公钥的签名全部验证通过。

有:

  • 椭圆曲线:G
  • 待签名的数据:m
  • 哈希函数:H()
  • 私钥:x1,x2,公钥:P1=x1*G, P2=x2*G
  • 随机数:k1, k2,并有 R1=k1*G, R2=k2*G
  • 组公钥:P = P1 + P2

则有:

  • 私钥x1和x2的签名为:(R1, s1), (R2, s2)。
  • 两个签名相加得到组签名:(R, s)。其中:R = R1 + R2, s = s1 + s2

推演过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1. 令 R = R1 + R2, s = s1 + s2

2. 已知:s1 = k1 + H(m || R || P)*x1,s2 = k2 + H(m || R || P)*x2

3. s = s1 + s2
= k1 + H(m || R || P)*x1 +
k2 + H(m || R || P)*x2
= (k1 + k2) + H(m || R || P)(x1 + x2) 4. 两边同时乘以G,则有:
sG = (k1 + k2)G + H(m || R || P)(x1 + x2)G
= (k1G + k2G) + H(m || R || P)(x1G + x2G)
= (R1 + R2) + H(m || R || P)(P1 + P2)
= R + H(m || R || P)P 5. 完成证明,并从两个合作方推演至N个合作方

组公钥(Group Key),是N把公钥进行相加后的值,又称聚合公钥(Aggregation Key)。需要指出的是,参与方需要先相互交换公钥和R值,然后再进行各自的签名。

应用

若使用在比特币上,相比ECDSA会有一些额外的显著优势:

  • 更安全。目前Schnorr签名有安全证明,而ECDSA目前并没有类似的证明。
  • 无延展性困扰。ECDSA签名是可延展性的,第三方无需知道私钥,可以直接修改既有签名,依然能够保持该签名对于此交易是有效的。比特币一直存在延展性攻击,直到SegWit激活后才修复,前提是使用segwit交易,而不是传统交易。BIP62 和 BIP66 对此有详细描述。
  • 线性。Schnorr签名算法是线性的!这点非常牛逼,基于这点可衍生出许多应用。例如,N个公钥进行签名,采用ECDSA的话,则有N个签名,验证同样需要做N次。若使用Schnorr,由于线性特性,则可以进行签名叠加,仅保留最终的叠加签名。例如同一个交易无论输入数量多少,其均可叠加为一个签名,一次验证即可。以及GMaxwell提出的Taproot/Grafroot也是基于其线性特性。

Q&A

Q: Schnorr签名是否可以用在m of n多重签名上?
A: 当然可以。多重签名只是m of n的签名数量的模式。与签名算法无关。

Q: Schnorr的组签名特性是否可以做或模拟出m of n式的签名?
A: 无法做到。组内有N把公钥,则必须对应有N个签名,缺一不可。每个人在生成签名的时候,在哈希函数里都代入的都是组公钥P。

Q: 签名机制的安全性如何衡量?
A: 主要取决于两个:1. 签名算法本身 2. 椭圆曲线。目前,Schnorr与ECDSA都用的是曲线secp256k1,这个层面一样。至于签名算法本身安全性,Schnorr目前有安全证明,安全优于ECDSA。


参考:

==================== End

Schnorr签名介绍的更多相关文章

  1. android打包签名介绍

    Keytool 是一个有效的安全钥匙和证书的管理工具. Java 中的 keytool.exe (位于 JDK\Bin 目录下)可以用来创建数字证书,所有的数字证书是以一条一条(采用别名区别)的形式存 ...

  2. dll强签名的由来和作用

    C# dll强签名介绍 之前基本没有这个概念,直到有一天我们的dll被反编译了,导致我们的代码基本上被看到了,才想起来要保护dll的安全性,因为C#语言的在编译过程中会产生中间语言导致dll很容易被反 ...

  3. openssl之EVP系列之12---EVP_Seal系列函数介绍

    openssl之EVP系列之12---EVP_Seal系列函数介绍     ---依据openssl doc/crypto/EVP_SealInit.pod翻译和自己的理解写成     (作者:Dra ...

  4. BLS签名算法

    前言 [失踪人口回归 (*/ω\*)] 真的好久好久没有更新了,因为自己也还在找方向,但还是把新学的知识记录在博客里.今天要介绍的是BLS签名算法. 一.BLS签名算法简介 BLS签名算法[1]是由斯 ...

  5. RFC4035笔记

    章 节 标题 说明 补充说明 支持级别 1 介绍 1.定义DNSSEC协议修改点2.定义以下概念:已签名域(signed zone)和域签名的要求列表3.描述权威域名服务器为了处理签名域的行为变化4. ...

  6. 【转】 Android 开发 之 JNI入门 - NDK从入门到精通

    原文网址:http://blog.csdn.net/shulianghan/article/details/18964835 NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub  ...

  7. android学习经常使用的数据文件夹

    android工程实践 1.仿360一键清理实现(一) "一键清理"是一个桌面图标,点击图标后,显示一个视图.进行清理动画.之后显示清理了几个进程,释放了多少M内存.点击" ...

  8. 【Android 应用开发】Android 开发 之 JNI入门 - NDK从入门到精通

    NDK项目源码地址 : -- 第一个JNI示例程序下载 : GitHub - https://github.com/han1202012/NDKHelloworld.git -- Java传递参数给C ...

  9. Android 新一代多渠道打包神器

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:李涛 ApkChannelPackage是一种快速多渠道打包工具,同时支持基于V1签名和V2签名进行多渠 ...

随机推荐

  1. linux查看磁盘类型(是否SSD盘)

    介绍两种方法: 第一种: cat /sys/block/sda/queue/rotational 注意: 命令中的sba是你的磁盘名称,可以通过df命令查看磁盘,然后修改成你要的 结果: 返回0:SS ...

  2. LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠

    题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...

  3. 从架构开始谈dubbo(一)

    架构发展史 一.单体应用架构      当网站流量很小时,所有的功能写在一个项目中,打包部署在tomcat中.          例如:公司管理系统,超市的收银系统         也可以将单体应用部 ...

  4. JMeter【第四篇】参数化

    概念 参数化的原因,并不是网上说的真实模拟不同用户,真实反应服务器性能,而是: 数据唯一性(比如注册名不能一样) 避免数据库查询缓存 如何避免参数化: 去掉唯一性校验的约束 关闭数据库的查询缓存,my ...

  5. Excel-自定义单元格、填充柄

    数据分析是指用适当的统计分析方法对收集来的大量数据进行分析, 提取有用信息和形成结论而对数据加以详细研究和概括总结的过程. 工具:EXCEL,sql,SAS,SPSS,R,Python.Hadoop. ...

  6. html声明charset="utf-8"后,浏览器访问中文依旧乱码(绝对有效)

        1.情景展示 html文件已经声明字符集为UTF-8,但是浏览器访问依旧乱码. 标题和页面内容都是乱码,这是怎么回事? 2.原因分析  charset="UTF-8"是让浏 ...

  7. Ubuntu 修改apt-get源为阿里源

    原文件重命名备份 sudo mv /etc/apt/sources.list /etc/apt/source.list.bak 编辑源列表文件 sudo vim /etc/apt/sources.li ...

  8. 【技术博客】使用PhpStorm和Xdebug实现Laravel工程的远程开发及调试

    目录 使用PhpStorm和Xdebug实现Laravel工程的远程开发及调试 简介 PhpStorm中的远程开发 1. 配置服务器 2. 配置路径对应 3. 配置同步 4. 进行代码同步 5. 优点 ...

  9. highcharts实现组织机构的点击选中和取消选中事件

    代码   Highcharts.chart('container', { chart: { height: 600, inverted: true }, title: { text: 'Highsof ...

  10. expect脚本自动获取root权限

    Linux脚本中有很多场景是进行远程操作的,例如远程登录ssh.远程复制scp.文件传输sftp等.这些命令中都会涉及到安全密码的输入,正常使用命令时是需要人工手动输入密码并接受安全验证的.为了实现自 ...