题解 洛谷P4779 【【模板】单源最短路径(标准版)】
正权图,貌似看来是一道裸的 \(dijkstra\)
\(dijkstra\)的主要步骤:
首先,在\(dijkstra\)中,源点表示一开始的出发点,蓝点表示还未确定的点,白点则表示已经确定的点。
第一步先确定源点,有时候题目会告诉你。
接下来第二步,通过当前点去更新其能到的点的最短距离,并把其标记为白点。
第三步,在一遍扫完后再次寻找一个当前还没有被使用过且离源点最近的蓝点,做下一次更新。
\(dijkstra\)的模拟过程:
以下图为例:
一开始,所有点都是蓝点。\(dis[1]=0\),其余点均为 \(0x7f\)。
第一轮找到\(dis[1]\)最小,所以将\(1\)标为白点,得到新的\(dis[2]=2\),\(dis[3]=4\),\(dis[4]=7\)
第二轮找到\(dis[2]\)最小,所以将\(2\)标为白点,得到新的\(dis[3]=3\),\(dis[5]=4\)
第三轮找到\(dis[3]\)最小,所以将\(3\)标为白点,得到新的\(dis[4]=4\)
最后两轮循环再将点\(4\)和点\(5\)变成白点即可。
所以最后的\(dis\)数组:
\(dijkstra\)的程序实现:
本题最后要求出每个点到源点的最短距离,显然就是跑一遍\(dijkstra\)然后输出\(dis\)数组即可。
朴素算法因为每次都要查找当前离源点最近的蓝点,时间复杂度会达到\(n^2\),不能过本题的数据,但还是可以把这道题\(A\)掉的。
于是我们来思考如何优化,很容易想到的一种方法就是用一个优先队列维护当前所有点离源点的距离,每次弹出最短的,直到出现蓝点为止。这样就省去了\(O(n)\)的寻找,总时间复杂度\(O(n+m\) \(log\) \(n)\)。
结构体的比较注意重载小于运算符哦\(qwq\)。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
int n,m,s,dis[100010],vis[100010];
struct node{
int x,dis;
bool operator<(const node&a)const{//重载小于运算符
return dis>a.dis;
}
};
vector< pair<int,int> >next[100010];//存边
priority_queue<node>q;
void dijkstra(){
memset(dis,0x7f,sizeof(dis));//一开始所有值都设为最大值
dis[s]=0;
q.push({s,0});//源点
while(!q.empty()){
int Min=q.top().x;//每次弹出最短的
q.pop();//出队
if(vis[Min])continue;//不能是白点
vis[Min]=1;//标记
for(int i=0;i<next[Min].size();i++){
int Next=next[Min][i].first;////得到下一个点
int Nextw=next[Min][i].second;//得到边权
if(dis[Next]>dis[Min]+Nextw){
dis[Next]=dis[Min]+Nextw;//更新
q.push({Next,dis[Next]});//入队
}
}
}
}
int main(){
cin>>n>>m>>s;
for(int i=1;i<=m;i++){
int x,y,z;
cin>>x>>y>>z;
next[x].push_back(make_pair(y,z));//连边
}
dijkstra();
for(int i=1;i<=n;i++){
cout<<dis[i]<<" ";
}
cout<<endl;
return 0;
}
\(\operatorname{Update}\) \(\operatorname{On}\) \(\operatorname{2019.08.27}\)
题解 洛谷P4779 【【模板】单源最短路径(标准版)】的更多相关文章
- 【洛谷 p3371】模板-单源最短路径(图论)
题目:给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 解法:spfa算法. 1 #include<cstdio> 2 #include<cstdlib> 3 #in ...
- 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)
首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...
- [模板]单源最短路径(Dijkstra)
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 主要还是再打一遍最短路,这种算法我用的不多... #include<bits/stdc++.h> using namesp ...
- 洛谷 P4779 【模板】单源最短路径(标准版) 题解
P4779 [模板]单源最短路径(标准版) 题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 100 ...
- 洛谷 P4779【模板】单源最短路径(标准版)
洛谷 P4779[模板]单源最短路径(标准版) 题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 10 ...
- 洛谷P4779 【模板】单源最短路径
P4779 [模板]单源最短路径(标准版) 题目链接 https://www.luogu.org/problemnew/show/P4779 题目描述 给定一个 N个点,M条有向边的带非负权图,请你计 ...
- 洛谷 P3371 【模板】单源最短路径(弱化版) 题解
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...
- 洛谷P3371 【模板】单源最短路径
P3371 [模板]单源最短路径 282通过 1.1K提交 题目提供者HansBug 标签 难度普及/提高- 提交 讨论 题解 最新讨论 不萌也是新,老司机求带 求看,spfa跑模板40分 为什么 ...
- 洛谷 P3371 【模板】单源最短路径
P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...
随机推荐
- CentOS 7.5二进制部署Kubernetes1.12(加密通信)(五)
一.安装方式介绍 1.yum 安装 目前CentOS官方已经把Kubernetes源放入到自己的默认 extras 仓库里面,使用 yum 安装,好处是简单,坏处也很明显,需要官方更新 yum 源才能 ...
- 使用Centos7.5+Nginx+Gunicorn+Django+Python3部署blog项目
项目开发环境是 Python3.5.2+Django1.10.6+Sqlite3+Centos7.5+Nginx1.12.2+Gunicorn 发布出来供需要的同学借鉴参考.文中如有错误请多多指正! ...
- 问题三:Appium 的 UIAutomator2 模式下使用 sendKeys 出现错误
在Appium默认的模式下,可以对TextFiled控件进行sendKeys操作: 设置capabilities.setCapability("automationName",&q ...
- Connection: close和Connection: keep-alive有什么区别
转自:https://www.cnblogs.com/TinyMing/p/4597136.html 看到有人问Connection: close和Connection: keep-alive有什么区 ...
- [转帖]Redis性能解析--Redis为什么那么快?
Redis性能解析--Redis为什么那么快? https://www.cnblogs.com/xlecho/p/11832118.html echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加e ...
- 酷!微软发布新终端工具,Win 10 将自带 Linux 内核
原创:技术最前线(id:TopITNews) 北京时间 5 月 7 日,2019 年微软 Build 开发者大会在雷德蒙德召开.今年大会上亮点很多,本文汇总一些和开发者相关的内容. 1. Window ...
- [LOJ2541] [PKUWC2018] 猎人杀
题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...
- (七) Docker 部署 MySql8.0 一主一从 高可用集群
参考并感谢 官方文档 https://hub.docker.com/_/mysql y0ngb1n https://www.jianshu.com/p/0439206e1f28 vito0319 ht ...
- 【洛谷 P5357】 【模板】AC自动机(二次加强版)(AC自动机,差分)
每次匹配都不停跳fail显然太慢了,于是在每个节点和fail指向的点连一条边,构成一棵树,在这棵树上差分一下就好了. AC自动机 就这个算法而言其实没用想象中那么难. #include <cst ...
- Ane技术大全 - Devil程序员
来源:http://www.th7.cn/Program/Android/201405/206863.shtml 一.Ane概况 1.Ane是什么? Ane是为了解决 as3(flash)与Java代 ...