fft相关的复习
任意长度卷积 CZT
就是一波推导
b_i &= \sum_{j=0}^{n-1} \omega^{ij}a_j \\
&= \sum_{j=0}^{n-1} \omega^{\frac{i^2+j^2-(i-j)^2}{2}}a_j \\
&= \omega^{\frac{i^2}{2}} \sum_{j=0}^{n-1}\omega^{\frac{-(i-j)^2}{2}} a_j \omega^{j^2}
\end {aligned}
\]
后面是一个减法卷积,就可以扩展到2的幂次直接fft就好了。
2次dft计算卷积
考虑有两个长度为\(n = 2^k\)的序列\(a(x), b(x)\),我们要计算他们的dft。
构造序列\(p_k = a_k + ib_k, \; q_k = a_k - ib_k\),
有结论\(dft_q(k) = conj(dft_p((n - k) \mod n))\)。展开,考虑几何意义???
我们可以解出\(dft_a, dft_b\)。
再做一遍idft就可以了
拆系数fft
记\(M = \sqrt {mod}\),把\(x\)表示成\(x = a \times M + b, b < M\)。
\((a \times M + b)(c \times M + d) = ac \times M^2 + (ad + bc) \times M + bd\)
对每一项分开算,做7次dft就可以了。
套用上述介绍做法4次dft就够了。
实现上注意在idft的时候,直接把一个序列放在real,另一个放在imag,idft回来直接/N后计算贡献就好了。
以及我们可以直接在一个for里面做解出AB,reverse序列的事情。
下面是关键部分的代码。
poly realmain(poly a, poly b) {
int n = a.size(), m = b.size();
prepare(n + m - 1);
for (int i = 0; i < n; i++) A[i] = cpx(a[i] & 32767, a[i] >> 15);
for (int i = 0; i < m; i++) B[i] = cpx(b[i] & 32767, b[i] >> 15);
dft(A, fft_n); dft(B, fft_n);
for (int i = 0; i < fft_n; i++) {
int j = (fft_n - i) % fft_n;
cpx ax, ay, bx, by;
ax = (A[i] + A[j].conj()) * cpx(0.5, 0);
ay = (A[i] - A[j].conj()) * cpx(0, -0.5);
bx = (B[i] + B[j].conj()) * cpx(0.5, 0);
by = (B[i] - B[j].conj()) * cpx(0, -0.5);
C[j] = ax * bx + ay * by * cpx(0, 1.0);
D[j] = ay * bx + ax * by * cpx(0, 1.0);
}
dft(C, fft_n); dft(D, fft_n);
poly ans(n + m - 1, 0);
for (int i = 0; i < ans.size(); i++) {
lo ax = lo(C[i].x / fft_n + 0.5) % mod;
lo ay = lo(C[i].y / fft_n + 0.5) % mod;
lo bx = lo(D[i].x / fft_n + 0.5) % mod;
lo by = lo(D[i].y / fft_n + 0.5) % mod;
ans[i] = ax + ((by + bx) << 15) + (ay << 30);
ans[i] = (ans[i] % mod + mod) % mod;
}
return ans;
}
fft相关的复习的更多相关文章
- 多项式FFT相关模板
自己码了一个模板...有点辛苦...常数十分大,小心使用 #include <iostream> #include <stdio.h> #include <math.h& ...
- 快速傅里叶变换(FFT)相关内容汇总
(原稿:https://paste.ubuntu.com/p/yJNsn3xPt8/) 快速傅里叶变换,是求两个多项式卷积的算法,其时间复杂度为$O(n\log n)$,优于普通卷积求法,且根据有关证 ...
- awk 相关的复习
1. awk 引用外部变量: aa=666 echo "." | awk -v GET_A=$aa '{print GET_A}' . sort -n fuxi.awk |awk ...
- sed 等相关的复习
sed相打印两行之间的内容: sed -n '/111/,/aad/p' fuxi.txt grep -n ".*" fuxi.txt sed -n '2,9'p fuxi.txt ...
- 用于ARM上的FFT与IFFT源代码(C语言,不依赖特定平台)(转)
源:用于ARM上的FFT与IFFT源代码(C语言,不依赖特定平台) 代码在2011年全国电子大赛结束后(2011年9月3日)发布,多个版本,注释详细. /*********************** ...
- STM32F4使用FPU+DSP库进行FFT运算的测试过程一
测试环境:单片机:STM32F407ZGT6 IDE:Keil5.20.0.0 固件库版本:STM32F4xx_DSP_StdPeriph_Lib_V1.4.0 第一部分:使用源码文件的方式,使 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- DSP5509项目之用FFT识别钢琴音调(4)之麦克风输入和Line in输入
1. 麦克风输入需要修改的内容,之前的版本是LINE IN的输入.实现功能,检测麦克风的输入,并且同时在耳机里面播放. #include <csl.h> #include <csl_ ...
- DSP5509项目之用FFT识别钢琴音调(1)
1. 其实这个项目难点在于,能不能采集到高质量的钢琴音调.先看一下FFT相关程序. FFT 并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法.由于我们在计算 DFT 时一次复数乘法需用四 ...
随机推荐
- python 直角图标生成圆角图标
参考链接:https://stackoverflow.com/questions/11287402/how-to-round-corner-a-logo-without-white-backgroun ...
- 【转载】Java对象的生命周期
Java对象的生命周期 在Java中,对象的生命周期包括以下几个阶段: 1. 创建阶段(Created) 2. 应用阶段(In Use) 3. 不可见阶段(Invisib ...
- 【转载】C#中可使用string.Empty代表空字符
在C#中,如果赋值一个字符串为空白字符串,我们一般会用“”的形式对字符串进行赋值操作,其实在C#的字符串类String类中,有个专门的常量string.Empty来代表空字符串,可直接在赋值的时候使用 ...
- 浅谈dubbo服务
Dubbo分布式服 推荐大家一个画图工具:https://www.processon.com/i/572d51efe4b0c3c74981ec14 1.Dubbo是一个分布式服务框架,致力于提供高性能 ...
- <P>标签是什么?怎么用!
<P>标签它是一个段落标签,它和<br>标签不一样.会自行起一行段落,并且可以作为一个盒子来使用.可以单独定义它. 比如下图: <p>这个就是一个段落</p& ...
- CSS中常见的布局
一.css中常见的布局有哪些? (1)两列布局 (2)三列布局 (3)弹性布局 (4)圣杯布局 (5)双飞翼布局 二.具体实现 (1)两列布局 https://www.cnblogs.com/qin ...
- net webapi jwt验证授权
参考文章:https://blog.csdn.net/liwan09/article/details/83820651
- Python学习日记(五) 编码基础
初始编码 ASCII最开始为7位,一共128字符.最后确定8位,一共256个字符,最左边的为拓展位,为以后的开发做准备. ASCII码的最左边的一位为0. 基本换算:8位(bit) = 1字节(byt ...
- oracle密码修改保持和以前相同
需求:密码要求3个月变更一次,不管是不是业务密码,均需修改.对于非业务账号,直接修改即可,没有什么影响,SQL语句为: ALTER USER {user_name} IDENTIFIED BY {ne ...
- linux ssh_config和sshd_config配置文件学习
在远程管理linux系统基本上都要使用到ssh,原因很简单:telnet.FTP等传输方式是以明文传送用户认证信息,本质上是不安全的,存在被网络窃听的危险.SSH(Secure Shell)目前较可 ...