洛谷P2312解方程题解
暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化。
秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\(n\)次多项式的算法转化为求\(n\)个一次多项式的算法。
但是这样只能得到30分,用高精也只能拿50分,所以此时可以用模数意义下的\(hash\)来解决,设置模数为1e9+7(或者其他比较大的模数),就可以来优化时间,虽然有很可能会错,但是还是可以用很快的时间来解决,且错的几率是非常的小的。
#include <bits/stdc++.h>
#define N 100100
#define mod 1000000007
#define ll long long
using namespace std;
ll n, m, ans, a[N], x[N];
bool flag = 0;
inline ll read()
{
char ch; ll sum = 0, fu = 1; ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') fu = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
sum = ( (sum * 10) + ch - '0') % mod;
ch = getchar();
}
return sum * fu;
}
bool check(ll now) {
ll sum = 0;
for (int i = n; i >= 0; i--)
sum = ( (sum + a[i]) * now ) % mod;
if (sum) return 0;
else return 1;
}
int main()
{
scanf("%lld%lld", &n, &m);
for (int i = 0; i <= n; i++)
a[i] = read();
/*
for (int i = 0; i <= n; i++)
printf("%lld ", a[i]);
*/
for (int i = 1; i <= m; i++)
if ( check (i) )
x[++ans] = i, flag = 1;
if (!flag)
printf("0"), exit(0);
printf("%lld\n", ans);
for (int i = 1; i <= ans; i++)
printf("%lld\n", x[i]);
}
洛谷P2312解方程题解的更多相关文章
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷 P2312 解方程
题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 2018.11.02 洛谷P2312 解方程(数论)
传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷P2312解方程
传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...
- 洛谷P2312 解方程(暴力)
题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...
随机推荐
- MongoDB 增删改查 Shell使用及操作
下载链接:https://robomongo.org/download 安装步骤省略,下一步下一步... 图形界面,连接默认,取个名字就行. 连接成功,可以愉快的使用了,不用总是敲命令了,简洁方便,多 ...
- vue-quill-editor 富文本框使用及上传图片到服务器
注:上传图片需要结合element-ui的upload上传 首先第一步:安装vue-quill-editor或quill两个模块 yarn add vue-quill-editor -D yarn a ...
- DQL 查询表中的数据
DQL 查询表中的数据:查询语句(最复杂的语句)不会对数据库中的数据进行修改,只是一种显示数据的方式 语法格式: select 字段列表 from 表名列表 where 条件列表 group by 分 ...
- SQL*Plus 格式化查询结果
为了在 SQL*Plus 环境中生成符合用户需要规范的报表,SQL*Plus 工具提供了多个用于格式化查询结果的命令,使用这些命令可以实现设置列的标题.定义输出值的显示格式和显示宽度.为报表增加头标题 ...
- sqlalchemy之基础操作
原文链接:https://www.cnblogs.com/DragonFire/p/10166527.html
- MySQL学习之基础篇09-事务
我们在建表的时候通常会在最后声明引擎类型,这次我们就来看看存储引擎都有哪些: 举个例子: --------------------------- 银行转账: 张三想给李四转500元钱: 张三-500 ...
- idea中添加web.xml配置文件与tomcat启动中遇到的web.xml文件找不到的问题
1,如何在idea中向war项目中添加web.xml的配置文件 idea通过maven创建war项目时没有指定是webapp导致创建出来的项目没有webapp的文件夹.其实war项目中都是在" ...
- systemctl 常用操作
以samba为列 systemctl start smb #启动smb服务 systemctl restart smb #重启smb服务 systemctl stop smb ...
- 【Linux】缺少service命令的解决办法
执行保存防火墙策略报错:提示没有找到service的文件遇到这个问题后,执行下面的命令,需要安装一个包initscripts rpm -qa | grep initscripts yum list | ...
- PHP openssl DES加解密
不说废话上代码 加密 $str_padded = 'android'; //要加密的字符串 $iv = "12345678"; 偏移值 cbc必填 "\x01\x02\x ...