【CTS2019】氪金手游(动态规划)

题面

LOJ

洛谷

题解

首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间的限制无关。所以我们只需要强制根节点在其他儿子之前的就行了(你可以认为如果这次随机抽到了子树外面的东西就重新抽一次,这个概率等于只考虑子树权值和的概率),那么这里的概率就是\(\frac{w_u}{\sum w}\)。然后每个根节点显然可以独立考虑,所以只需要把所有根节点的结果直接乘起来就好了。

那么对于\(w\)也有概率的情况,设\(f[i][w]\)表示以\(i\)为根的子树中,权值和为\(w\)时根节点合法的概率。

这个随便转移一下就很好做了。

现在加上了反向边,反向边强制了儿子要在根节点之前出现,而状态也只要两种,要么反向边在前要么反向边在后,那么设\(f[i][w][j]\)表示以\(i\)为子树,子树和为\(w\),至少有\(j\)条反向边不满足条件的概率,既然强制了若干个不反向,那么就是你枚举一些边,然后强制把它变成正向边,剩下的反向边直接删掉,这样子就可以求出这个概率。

注意到这个容斥的系数就是简单的\(\pm 1\),所以只需要直接把容斥系数带进去算就行了。

这样子复杂度可以做到\(O(n^2)\)。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 998244353
#define MAX 1010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int f[MAX][3*MAX],sz[MAX],p[MAX][4],inv[MAX*3],tmp[MAX*3],n,ans;
void dfs(int u,int ff)
{
sz[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs(v,u);
for(int j=0;j<=3*sz[u];++j)
for(int k=0;k<=3*sz[v];++k)
{
int val=1ll*f[u][j]*f[v][k]%MOD;
if(i&1)tmp[j+k]=(tmp[j+k]+val)%MOD;
else tmp[j+k]=(tmp[j+k]+MOD-val)%MOD,tmp[j]=(tmp[j]+val)%MOD;
}
sz[u]+=sz[v];for(int j=0;j<=3*sz[u];++j)f[u][j]=tmp[j],tmp[j]=0;
}
for(int j=0;j<=sz[u]*3;++j)f[u][j]=1ll*f[u][j]*inv[j]%MOD;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
int a1=read(),a2=read(),a3=read();
int inv=fpow(a1+a2+a3,MOD-2);
f[i][1]=1ll*a1*inv%MOD;
f[i][2]=2ll*a2*inv%MOD;
f[i][3]=3ll*a3*inv%MOD;
}
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
inv[0]=inv[1]=1;for(int i=2;i<=3*n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
dfs(1,0);for(int i=0;i<=3*n;++i)ans=(ans+f[1][i])%MOD;
printf("%d\n",ans);
return 0;
}

【CTS2019】氪金手游(动态规划)的更多相关文章

  1. [CTS2019]氪金手游

    [CTS2019]氪金手游 各种情况加在一起 先考虑弱化版:外向树,wi确定 i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关 这些概率乘起来就是最终合法的概率 如果都是外向树, f ...

  2. LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP

    传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...

  3. 【题解】Luogu P5405 [CTS2019]氪金手游

    原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarro ...

  4. [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)

    先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...

  5. 题解-CTS2019氪金手游

    Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...

  6. Luogu5405 CTS2019氪金手游(容斥原理+树形dp)

    考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...

  7. p5405 [CTS2019]氪金手游

    题目大意 题意狗屁不通 看毛子语都比看这个题面强 分析 我们假设这棵树是一个内向树 那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望 转移只需枚举当前期望大小和子树期望大小即可 但是由于 ...

  8. [CTS2019]氪金手游(容斥+树形背包DP)

    降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己. ...

  9. Loj #3124. 「CTS2019 | CTSC2019」氪金手游

    Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...

随机推荐

  1. vue -全局组件和局部组件

    1.全局组件:Vue.component('标签名', 构造器名) Vue.component('mycpn', cpnC) 注:这种注册组件的方式是全局组件,可以在多个Vue实例中使用. 2.局部组 ...

  2. vue学习指南:第三篇(详细) - vue的生命周期

    今天小编给大家详细讲解一下 vue 的生命周期.希望大家多多指教,哪里有遗漏的地方,也请大家指点出来 谢谢. 一. 怎么理解 Vue 的生命周期的? 生命周期:从无到有,到到无的一个过程.Vue的生命 ...

  3. Scrum 冲刺第四篇

    我们是这次稳了队,队员分别是温治乾.莫少政.黄思扬.余泽端.江海灵 一.会议 1.1  28号站立式会议照片: 1.2  昨天已完成的事情 团队成员 昨日已完成的任务 黄思扬 活动内容管理页(前端) ...

  4. 【MongoDB详细使用教程】三、高级查询

    目录 1.使用比较运算符查询 2.使用关键字查询 2.1.in/not in 关键字 2.2.size 关键字 2.3.exists 关键字 2.4.or 关键字 3.模糊查询 4.查询结果排序 5. ...

  5. [TCP/IP] TCP如何实现流量控制和拥塞控制

    流量控制:数据的传送与接收过程当中很可能出现收方来不及接收的情况,这时就需要对发方进行控制,以免数据丢失.流量控制用于防止在端口阻塞的情况下丢帧,这种方法是当发送或接收缓冲区开始溢出时通过将阻塞信号发 ...

  6. Bayesian Optimization使用Hyperopt进行参数调优

    超参数优化 Bayesian Optimization使用Hyperopt进行参数调优 1. 前言 本文将介绍一种快速有效的方法用于实现机器学习模型的调参.有两种常用的调参方法:网格搜索和随机搜索.每 ...

  7. P4677 山区建小学|区间dp

    P4677 山区建小学 题目描述 政府在某山区修建了一条道路,恰好穿越总共nn个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di 为了提高山区 ...

  8. 解决Error: ENOENT: no such file or directory, scandir 'xxx\node-sass\vendor'

      解决方案是执行以下方法: npm rebuild node-sass

  9. 解决IIS7、IIS7.5 应用程序池回收假死的方法

    最近iis网站一直假死状态,都懵了,查看程序有没有关闭数据库,反复捣鼓,还一直测试是否是程序应用池自动回收问题依然没有效果.经过老师提醒,找到了解决办法,在此做个笔记! 原因在于:应用程序池超时配置被 ...

  10. UiPath:Split(","c)以逗号区分遍历字符串数组

    学习中遇到同一用户多种职业的情况,因为所有的数据都是从Excel里面取的,所以只能把所有的职业写在一个单元格里,以逗号区分. 那么就需要先把字符串转为数组,然后遍历数组去添加职位.如图 Split(& ...