做法一

\(O(nm)\)

考虑\(f(i,j)\)为i个+1,j个-1的贡献

  • \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i-1)\)

  • \(f(i,j-1)\)考虑首添加一个\(-1\),则贡献为\(-1\times\)最大前缀和不为\(0\)的个数,考虑序列个数减掉为\(0\)的个数

设\(k(i,j)\)为\(0\)的个数

\(i=0:k(i,j)=1\)

\(j=0或i>j:k(i,j)=0\)

\(i\le:k(i,j)=k(i-1,j)+k(i,j-1)\),理解:把\(1\)放在最后面,把\(-1\)放在最前面,一定可以构成

做法二

\(O(n+m)\)

考虑\(f(i)\)表示最大子序列为\(i\)的个数,则答案为\(\sum\limits_{i=1}^{n}i\times f(i)\)

考虑\(g(i)\)为最大子序列大于等于\(i\)的个数,显然\(max(n-m,0)\le i\le n\)

抽象到方格:长\(n\)高\(m\)的矩形,往上走相当于\(-1\),往右走相当于\(+1\),最大前缀和至少为\(i\),则路线需要经过\(y=x-i\)

  • \(0\le i\le n-m:C(n+m,n)\)

  • \(n-m<i\le n\):考虑\((0,0)\)对\(y=x-i\)对称,则为\((i,-i)\)到\((n,m)\)的方案数,转换为以下问题,为\(C(n+m,m+k)\)

已知未知数个数,系数均为\(1\),和为给定值,未知数非负个数解

Code

#include<bits/stdc++.h>
typedef long long LL;
const LL maxn=1e4+9,mod=998244853;
LL n,m,ans;
LL fac[maxn],fav[maxn],g[maxn];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=base*ret%mod;
base=base*base%mod; b>>=1;
}
return ret;
}
inline void Pre(LL N){
fac[0]=1;
for(LL i=1;i<=N;++i) fac[i]=fac[i-1]*i%mod;
// puts("133");
fav[N]=Pow(fac[N],mod-2);
for(LL i=N;i>=1;--i) fav[i-1]=fav[i]*i%mod;
}
inline LL C(LL N,LL M){
return fac[N]*fav[M]%mod*fav[N-M]%mod;
}
inline LL Solve(LL k){
if(k<=n-m) return C(n+m,m);
return C(n+m,m+k);
}
int main(){
scanf("%lld%lld",&n,&m);
Pre(n+m);
// puts("233");
for(LL i=1;i<=n;++i) g[i]=Solve(i); g[n+1]=0;
for(LL i=1;i<=n;++i){
ans=(ans+i*((g[i]-g[i+1]+mod)%mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}

CF1204E Natasha, Sasha and the Prefix Sums(组合数学)的更多相关文章

  1. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

  2. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  3. CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)

    题面 题解 把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线, 我们可以枚举答案,然后乘上方案 ...

  4. CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)

    传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...

  5. E. Natasha, Sasha and the Prefix Sums

    http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...

  6. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  7. 【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query

    A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...

  8. 【题解】【数组】【Prefix Sums】【Codility】Passing Cars

    A non-empty zero-indexed array A consisting of N integers is given. The consecutive elements of arra ...

  9. Codeforces 837F Prefix Sums

    Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...

随机推荐

  1. python-django框架中使用docker和elasticsearch配合实现搜索功能

    注意:系统环境为Ubuntu18 一.docker安装 0:如果之前有安装过docker使用以下命令卸载: sudo apt-get remove docker docker-engine docke ...

  2. .net 调用存储过程

    语言:C# 一.调用带输入参数的存储过程 首先自然是在查询分析器里创建一个存储过程喽~~   如下所示: create proc proc_1 @uid int, @pwd varchar(255) ...

  3. C# Attribute 名称和使用的问题

    如果定义Attribute时, 名字是以Attribute结尾的, 在使用的时候, 就可以省略Attribute, 直接写前面的名字, 但是这样真的好吗? 自以为帮程序员省了一个单词, 然而 真理不再 ...

  4. Linux多IP配置

    # ifconfig eth0:1 172.168.1.222

  5. react基础学习和react服务端渲染框架next.js踩坑

    说明 React作为Facebook 内部开发 Instagram 的项目中,是一个用来构建用户界面的优秀 JS 库,于 2013 年 5 月开源.作为前端的三大框架之一,React的应用可以说是非常 ...

  6. MySQL数据库的事物隔离级别

    一. 查看数据库的事物隔离级别 mysql> show variables like '%isolation'; +-----------------------+--------------- ...

  7. 【spark】spark-2.4.4的安装与测试

    4.2.1 下载并安装spark 下载文件名:spark-2.4.4-bin-without-hadoop.tgz [hadoop@hadoop01 ~]$ tar -zxvf spark-2.4.4 ...

  8. Android笔记(五十七)Android总结:基础篇

    什么是安卓 Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发.目前发行版本是6.0 安卓平台的优势 ...

  9. Kotlin对象表达式深入解析

    嵌套类与内部类巩固: 在上一次https://www.cnblogs.com/webor2006/p/11333101.html学到了Kotlin的嵌套类与内部类,回顾一下: 而对于嵌套类: 归根结底 ...

  10. java.lang.RuntimeException: org.springframework.dao.DuplicateKeyException:

    java.lang.RuntimeException: org.springframework.dao.DuplicateKeyException: ### Error updating databa ...